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Abstract 

Bennett, F.E., K.T. Phelps, C.A. Rodger, J. Yin and L. Zhu, Existence of perfect 

Mendelsohn designs with k = 5 and 1> 1, Discrete Mathematics 103 (1992) 129-137. 

Let u, k, and I be positive integers. A (u, k, A)-Mendelsohn design (briefly (v, k, A)-MD) is a 

pair (X, 3) where X is a u-set (of points) and %l is a collection of cyclically ordered k-subsets of 

X (called blocks) such that every ordered pair of points of X are consecutive in exactly I blocks 

of %9. A set of k distinct elements {a,, a,, , ak} is said to be cyclically ordered by 

a, < a2 <. . . < ak <a, and the pair a;, a,+, is said to be t-apart in cyclic k-tuple 

(al, a 2, . 1 ak) where i + t is taken module k. It for all t = 1, 2, . , k - 1, every ordered pair 

of points of X is t-apart in exactly A. blocks of %I, then the (u, k, A)-MD is called a perfect 
design and is denoted briefly by (v, k, A)-PMD. In this paper, we shall be concerned mainly 

with the case where k = 5 and A > 1. It will be shown that the necessary condition for the 

existence of a (v, 5, A)-PMD, namely, Iu(v - 1) = 0 (mod 5) is also sufficient for 1> 1 with the 
possible exception of pairs (v, A) where I = 5 and u = 18 and 28. 

1. Introduction 

The notion of a perfect cyclic design was introduced by N.S. Mendelsohn [12]. 

This concept was further developed and studied in subsequent papers by various 
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authors (see, for example, [l-6, 10, 11, 181). I n what follows, we shall adapt the 

terminology and notation of [8, lo], where the designs have been called 

Mendelsohn designs. 

A set of k distinct elements {a,, u2, . . . , ak} is said to be cyclically ordered by 

a,<a,?<**. < ak < aI and the pair ai, u~+~ is said to be t-apart in a cyclic k-tuple 

( al, a2, . . . , uk) where i + t is taken modulo k. 

Let v, k and A be positive integers. A (v, k, A)-Mendelsohn design (briefly 

(v, k, A)-MD) is a pair (X, SB) where X is a v-set (of points) and C-B is a collection 

of cyclically ordered k-subsets of X (called blocks) such that every ordered pair of 

points of X are consecutive in exactly A blocks of CB. The (v, k, A)-MD is called 

r-fold perfect if each ordered pair of points of X appears t-apart in exactly 3, 

blocks for all t = 1, 2, . . . , r. A (k - 1)-fold perfect (v, k, A)-MD is called perfect 

and is denoted briefly by (v, k, A)-PMD. It is perhaps worth mentioning that a 

(v, k, A)-MD is equivalent to the decomposition of the complete directed 

multigraph AK,* on v vertices into k-circuits and that a (v, k, A)-PMD is 

equivalent to the decomposition of AK,* into k-circuits such that for any r, 

1 c r s k - 1 and for any pair (x, y) E X X X there are exactly A circuits along 

which the distance from x to y is r. 

It is easy to show that the number of blocks in a (v, k, A)-PMD is Av(v - 1)/k, 

and hence an obvious necessary condition for its existence is ilv(v - 1) = 0 

(mod k). It is known [l, 131 that the necessary condition for the existence of a 

(v, 3, A)-PMD is sufficient, except for v = 6 and h = 1. It is also known [2,6,18] 

that the necessary condition for the existence of a (v, 4, A)-PMD is sufficient 

except for v = 4 and )3 odd, v = 8 and Iz = 1, and possibly excepting v = 12 and 

3c = 1. For practical purposes, the necessary condition for the existence of a 

(v, 5, A)-PMD can be reduced to the following. 

Lemma 1.1. A necessary condition for the existence of a (v, 5, A)-PMD is 

(1) v ~0 or 1 (mod5) for AfO (mod5), 

(2) v 3 5 for I, = 0 (mod 5). 

The problem of existence of a (v, 5, l)-PMD was recently investigated in [5], 

where an almost complete solution was presented in the form of the following 

theorem. 

Theorem 1.2. A (v, 5, l)-PMD exists for every positive integer v = 0 or 1 (mod 5) 

with the exception of v = 6 and the possible exception of v = 10, 15, 20, 26, 30, 36, 

46, 50, 56, 66, 86, 90, 110, 126, 130, 140, 146, 186, 206, 246 and 286. 

In this paper, we shall investigate the existence of a (v, 5, A)-PMD where 3, > 1, 

and show that the necessary condition in Lemma 1.1 is also sufficient except 

possibly when A = 5 and v = 18 and 28. 
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2. Preliminaries 

In order to establish our main result, we shall employ both direct and recursive 
constructions. Our recursive construction will involve product constructions and 
the motion of pairwise balanced designs (PBDs), which we briefly describe below. 
For more information on PBDs and auxiliary designs such as mutually orthogonal 
Latin squares (MOLS), the interested reader is referred to [7,9,16]. 

Let K be a set of positive integers. A pairwise balanced design (PBD) of index 
A, B(K, A; V) is a pair (X, 2) where X is a v-set (of points) and ~8 is a collection 
of subsets of X (called blocks) with sizes from K such that every pair of distinct 
points of X is contained in exactly 3, blocks of 5% We shall denote by B(K, A) the 
set of all integers v for which there exists a PBD B(K, a; v). A B(K, 1) will be 
denoted simply by B(K). A PBD B({k}, A; v is essentially a balanced incomplete ) 
block design (BIBD) with parameters v, k and A. 

The following recursive construction is a general form of Theorem 2.9 in (121. 

Lemma 2.1. Let v, k, A1 and A2 be positive integers. Suppose there exists a PBD 

B({k,, kz, . . . 9 kl, &; VI and for each ki there exists a (ki, k, A,)-PMD, then 
there exists a (v, k, A-,&)-PMD. 

We shall also make use of the following obvious result. 

Lemma 2.2. Zf a (v, k, Al)-PMD and a (v, k, A,)-PMD exist, then there exists a 
(v, k, mA, + n&)-PMD, where m and n are nonnegative integers. 

For the most part, our direct method of construction will be a variation of the 
method using difference sets in the construction of BIBDs (see, for example, [7]). 
Instead of listing all of the blocks of a design, it suffices to give the group G acting 
on a set of base blocks. We shall adapt the following notation: 

where .5$ is the collection of base blocks of the design. 

Lemma 2.3. Zf there exist k - 2 idempotent MOLS(n), then there exists an 
(n, k, k)-PMD. In particular, if n is a prime power and n 2 k, then there exists an 
(n, k, k)-PMD. 

Proof. For 1 s i s k - 2, let (Q, *i) be the quasigroups corresponding to the 
k - 2 idempotent MOLS(n) where Q = (1, 2, . . . , n}. Let 54 be the following 
collection of blocks: 

93 = {(i, j, i*Ij, i*2j, . . . , i*k_-2j) 1 1 C i, j S n, i Zj}. 
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Then it is readily checked that (Q, 9) is a (n, k, k)-PMD. Moreover, it is fairly 

well-known that if n is a prime power and k s n, then there exist k - 2 

idempotent MOLS(n), and so the conclusion follows. 0 

Lemma 2.4. If q = kn + 1 is a prime power, then there exists a (q + 1, k, k)-PMD. 

Proof. Suppose d is a primitive root of GF(q). Take X = GF(q) U {a}. Let B 

consist of the following blocks: 

(z, zd”, zdzn, . . . , zdck-‘jn), z E GF(q)\{O, 1, d”, . . . , d(k-l)n}, 

(1, d”, d2”, . . . , d(k-l)n), twice, 

(~0, z, zd”, . . . , zd(k-2)n), z E (1, d”, . . . , dck-‘I”}. 

It is readily checked that (X, dev 9) is the required (q + 1, k, k)-PMD. 0 

We shall make use of the following lemma (see [5]). 

Lemma 2.5. For any integer n 2 5, n 4 (6, 10, 18, 22, 26, 28}, there exist 3 

idempotent MOLS(n). 

3. The construction of (u, 5,1)-PMD, A # 0 (mod 5) 

In this section we shall show that the necessary condition for the existence of a 

(v, 5, A)-PMD for 3, > 1 and Iz f 0 (mod 5), namely, v = 0 or 1 (mod 5), is also 

sufficient. In view of Lemma 2.2, we need only establish the result for the cases 

il = 2 and J. = 3. The following known result (see, for example, [7, IX(7.6.d); 16, 

Proposition 5.21) will be very useful here. 

Lemma 3.1. For any positive integer v = 0 or 1 (mod 5), Y E B((5, 6, 10, 11, 15, 

16, 20, 35, 40)). 

Combining Lemma 2.1 and Lemma 3.1 the existence problem now can be 

reduced to a finite number of cases, some of which are obvious from Theorem 

1.2. 

Lemma 3.2. Zf 3, = 2 or 3, then there exists a (v, 5, A)-PMD where v = 5, 11, 16, 

35, 40. 

Proof. Apply Lemma 2.2 with the result in Theorem 1.2. 0 

We are now in a position to prove the following. 

Theorem 3.3. A (v, 5, 2)-PMD exi.rts for any positive integer u = 0 or 1 (mod 5). 
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Proof. From Lemma 3.1 and Lemma 3.2, we need only prove the result when 
v = 6, 10, 15, 20. 

For v = 6, let G = Z5 and X = Z5 U (00). Let CB1 be the following blocks: 

B1= ((0, 1, 2, 3,4), (0,4, 3, 2, 1)). 

Let ~$3~ be the following base blocks: 

%= {(m, 0, 2, 3, I>, (00, 0, 2, 1, 4)). 

It is readily checked the (X, S1 U dev CBJ is a (6,5,2)-PMD. 
For the remaining three cases, we let G be the cyclic group Z,_1 = 

(0, 1, . . . > v - 2) and X = &_i U (03). We then present a collection of base 
blocks 9, and it is readily checked that (X, dev 3,) is the required (v, 5, 2)-PMD. 
The last construction is due to Wu [17]. 

(1) u = 10, G = Zg, 

9 = ((0, 1, 4, 2, 5), (0, 5, 2, 4, I), 

(m, 0, 1, 3,7), (Y 0, 5, 372)). 

(2) n = 15, G = Z1z,, 

2 = ((0, 1, 2, 11, 9), (0, 12, 1, 4, IO), 

(0, 13, 12, 7, 9), (0, 11, 13, 9, 3), 

(~0, 6, 13,9), (03, 0,4, 11, 5)). 

(3) v = 20, G = &, 

B = ((0, 1, 16, 7, 15), (0, 12, 18, 2, 14) 

(0, 11, 1, 5, 4), (0, 7, 4, 17,5), 

(0,3,4, 9, II), (0, 17, 12, 11, 8), 

(00, 0,2, 11, 5), (m, 0, 6, 16, 14)). 0 

Theorem 3.4. A (v, 5, 3)-PMD exists for any positive ingeger u = 0 or 1 (mod 5). 

Proof. From Lemma 3.1 and Lemma 3.2, we need only consider the existence of 
a (v, 5,3)-PMD for v = 6, 10, 15, 20. 

For v = 6, let G = h5 and X = Z5 U {m}. Let 

SZ.& = ((0, 1, 2, 3, 4), 3 times} and 

% = {(co, 0,2, 4, l), (co, 0, 3, 1, 4), (00, 074, 3, 2)). 

It is readily checked that (X, .%?i U dev 9&J is a (6,5,3)-PMD. 
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For the other three cases, we let G = Z,_1 and X = Z,-, U {a}. It is readily 

checked that (X, dev a) is the required (v, 5, 3)-PMD where CB is listed below. 

(1) u = 10, G = &,, 

3 = ((0, 1, 7, 3, 5), (0, 4, 1, 3, 2), 

(0,7, 4, 3, g), (~0, 0, 2, 5, 6) 

(00, 0, 5, 8, 6) (co, 0, 8, 2, 6)). 

(2) u = 15, G = Zi4, 

3 = ((0, 5, 3, 11, 4), (0, 1, 2, 5, 6), 

(0, 7, 13, 1, 10) (0, 13, 10, 9, S), 

(0, 3, 6, 8, 10)) (0, 12, 10, 7, 4) 

(00, 0, 5, 13, 3) (00, 0, 5, 12, 7) 

(Y 0, 10, 2, 11)). 

(3) Y = 20, G = Zig, 

3 = ((0, 1, 3, 9, lO), (0, 2, 17, 13, 5) 

(0, 714, 17, 5), (0, 10, 18, 6, 16), 

(0, 11, 15, 12, 2), (0, 12, 5, 10, 16) 

(0, 15, 16, 1, ll), (0, 17, 16, 11, 3) 

(0, 1% 5, 17, 6)) (m, 0, 2, 11, 5), 

(Y 0, 3, 8, 7) (03, 0, 4, 9, 7)). 0 

Applying Lemma 2.2 with the results in Theorem 3.3 and Theorem 3.4, we 

obtain the main theorem of this section. 

Theorem 3.5. For any given integer A> 1 and AfO (mod5), there exists a 

(v, 5, A)-PMD f or any positive integer v = 0 or 1 (mod 5). 

For the sake of completeness, we wish to remark that there are some useful 

generalizations of results contained in [5] which can be applied in the study of 

PMDs with A> 1. While utilizing Lemmas 2.5, 3.1 and 3.2, the following 

constructions provide a proof of Theorem 3.5 with very few (5) exceptions. For 

the definitions of MOLS with holes (HMOLS) and a PMD with holes (HPMD), 

the reader is referred to [5]. We state the following obvious generalization of 

[5, Theorem 3.31. 

Theorem 3.6. Let k be an odd prime and A be a positive integer. Zf there exist 

k - 2 HMOLS(n) of type (nl, n2, . . . , nh), then there exists a (kn, k, A)-HPMD of 

type (knl, kn2, . . . , knd. 
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For the case k = 5, we have the corresponding generalizations of [5, Corollaries 
3.5 and 3.61. 

Corollary 3.7 (The Sn-construction). Zf there exist 3 HMOLS(n) of type 

( nl, n2, . . . , n,J and a (5ni, 5, A)-PMD for 1 G i c h, then there exists a (5n, 5, A)- 
PMD. 

Corollary 3.8 (The 5n + l-construction). If there exist 3 HMOLS(n) of type 
IZJ and a (5n, + 1, 5, A)-PMD for 1 zz i =S h, then there exists a 

4. The construction of (u, 5,5)-PMD 

In this section we establish the existence of a (v, 5, 5)-PMD for any integer 
v 3 5, with the possible exception of 18 and 28. 

Lemma 4.1. There exists a (22, 5, 5)-PMD. 

Proof. Let X = Z2i U {m} and let B be the development of the following base 
blocks modulo 21. 

(03, 0, 4, 11, 3) (a, 4, 11, 3, 9), (03, 11, 3, 9, O), 

(Y 3, 9, 0, 4) (co, 9,0,4, 11) (0, 1, 6, 8, 18) (5 times), 

(0, 15, 2, 16, 12) (5 times), (0, 19, 14, 13, 10) (5 times), 

(0,4, 11,3,9) (2 times). 

It is readily checked that (X, B) is a (22,5,5)-PMD. 0 

Theorem 4.2. A (v, 5, 5)-PMD exists for any integer v 3 5, with the possible 
exception of v = 18 and 28. 

Proof. If‘v E (6, 10, 26}, then we combine the (v, 5,2)-PMD and the (v, 5, 3)- 
PMD constructed in Theorem 3.5 to produce a (v, 5, 5)-PMD by Lemma 2.2. If 
v = 22, the result is obtained in Lemma 4.1. If v 15 and v $ (6, 10, 18, 22, 26, 
28}, then we apply Lemmas 2.3 and 2.5 to obtain a (v, 5, 5)-PMD. This 
completes the proof of the theorem. Cl 

5. Main result 

To obtain our main results of this paper, we need only consider the existence of 
a (v, 5, A)-PMD when A 2 10 and A = 0 (mod 5). The problem can be reduced to 
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the cases ,I = 10 and 15 by using Lemma 2.2. Moreover, by Lemma 2.2 and the 
result in Theorem 4.2, the problem can further be reduced to the existence of a 
(v, 5, lO)-PMD and a (v, 5, 15)-PMD for v = 18 and 28. We shall make use of the 
following lemma, which is taken from [9, Lemma 5.331. 

Lemma 5.1. A (v, 6, 5)-PBD exists if u = 0 or 1 (mod 3) and v 2 6. 

We can now prove the following. 

Lemma 5.2. There exist Q (v, 5, lO)-PMD and a (v, 5, 15)-PMD for v = 18 and 

28. 

Proof. For v = 18, 28, there exists a (v, 6, 5)-PBD from Lemma 5.1. For il = 2 or 
3, a (6, 5, A)-PMD exists from Theorem 3.3 and Theorem 3.4. We then apply 
Lemma 2.1 to get a (v, 5, lO)-PMD and a (v, 5, 15)-PMD. 0 

As an immediate consequence, we have the following. 

Lemma 5.3. There exist a (v, 5, lO)-PMD and a (v, 5, 15)-PMD for any integer 

v 35. 

Proof. Combine the results in Theorem 4.2 and Lemma 5.2. 0 

Using Lemma 2.2, we have 

Theorem 5.4. There exists a (v, 5, A)-PMD for any integer v 3 5 when 

A=O(mod5) and ilal0. 

Now, we come to the main result of this paper. 

Theorem 5.5. Let v and 3, be positive integers satisfying kv(v - 1) = 0 (mod 5) and 

I. > 1. Then there exists a (v, 5, A)-PMD except possibly when il = 5 and v = 18 

and 28. 

Proof. Combine Theorem 3.5, Theorem 4.2 and Theorem 5.4. 0 

6. Concluding remark 

From Theorems 1.2 and 5.5, we conclude that the necessary condition for the 
existence of a (v, 5, A)-PMD, namely, Av(v - 1) = 0 (mod 5), it also sufficient, 
except for il = 1 and u = 6, and possibly excepting 3L = 1 and 21 values of v shown 
in Theorem 1.2, and A. = 5 and v E { 18,28}. 
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Note added in proof. Recently, R.J.R. Abel [J. Combin. Theory Ser. A 58 (1991) 

306-3091 has established the existence of 4 MOLS(28). Consequently, the 

number 28 can now be removed from the list of possible exceptions in Lemma 

2.5, Theorems 4.2 and 5.5. 
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