2 research outputs found

    Reversing subdivision rules: local linear conditions and observations on inner products

    Get PDF
    AbstractIn a previous work (Samavati and Bartels, Comput. Graphics Forum 18 (1998) 97–119) we investigated how to reverse subdivision rules using global least-squares fitting. This led to multiresolution structures that could be viewed as semiorthogonal wavelet systems whose inner product was that for finite-dimensional Cartesian vector space. We produced simple and sparse reconstruction filters, but had to appeal to matrix factorization to obtain an efficient, exact decomposition. We also made some observations on how the inner product that defines the semiorthogonality influences the sparsity of the reconstruction filters. In this work we carry the investigation further by studying biorthogonal systems based upon subdivision rules and local least-squares fitting problems that reverse the subdivision. We are able to produce multiresolution structures for some common univariate subdivision rules that have both sparse reconstruction and decomposition filters. Three will be presented here – for quadratic and cubic B-spline subdivision and for the four-point interpolatory subdivision of Dyn et al. We observe that each biorthogonal system we produce can be interpreted as a semiorthogonal system with an inner product induced on the multiresolution that is quite different from that normally used. Some examples of the use of this approach on images, curves, and surfaces are given
    corecore