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Abstract

In a previous work (Samavati and Bartels, Comput. Graphics Forum 18 (1998) 97–119) we investigated how to re-
verse subdivision rules using global least-squares �tting. This led to multiresolution structures that could be viewed as
semiorthogonal wavelet systems whose inner product was that for �nite-dimensional Cartesian vector space. We produced
simple and sparse reconstruction �lters, but had to appeal to matrix factorization to obtain an e�cient, exact decomposi-
tion. We also made some observations on how the inner product that de�nes the semiorthogonality inuences the sparsity
of the reconstruction �lters. In this work we carry the investigation further by studying biorthogonal systems based upon
subdivision rules and local least-squares �tting problems that reverse the subdivision. We are able to produce multires-
olution structures for some common univariate subdivision rules that have both sparse reconstruction and decomposition
�lters. Three will be presented here – for quadratic and cubic B-spline subdivision and for the four-point interpolatory
subdivision of Dyn et al. We observe that each biorthogonal system we produce can be interpreted as a semiorthogonal
system with an inner product induced on the multiresolution that is quite di�erent from that normally used. Some examples
of the use of this approach on images, curves, and surfaces are given. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Setting

Assume that the points for a curve or surface, or the pixels for an image, are given. Denote them
by ck+1‘ . They will be referred to as the �ne data. In some circumstances these data could have
been produced by subjecting a smaller number of points or pixels, the coarse data, to a subdivision
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process:

ck+1‘ =
∑

�∈ �Pk+1
‘

pk+1
‘;� c k

� (1.1)

In other circumstances the data are simply given, but it may be of interest to �nd an approximate
set of coarse data ck

� which, when subjected to the subdivision process de�ned by the pk+1
‘;� , almost

reproduce the �ne data; that is, via the reconstruction �lter

ck+1‘ =
∑

�∈ �Pk+1
‘

pk+1
‘;� c k

� +
∑

�∈ �Qk+1
‘

qk+1
‘;� dk

� : (1.2)

The second summation represents the amount by which a subdivision of the coarse points C k fails
to reproduce the �ne points Ck+1.
This the multiresolution setting, for if the approximation process is repeated a number of times

starting with the ck
� , the originally given data ck+1‘ will break down into a small amount of coarse data

ck−N
� and layers of detail information dk−N

� ; : : : ; dk
� from which the original data can be recovered

using the reconstruction coe�cients {pj
‘;�: �∈ �P

j
‘ ; j = k − N + 1; : : : ; k + 1} and {qj

‘;� : �∈ �Q
j
‘ ; j =

k − N + 1; : : : ; k + 1}. In the best of situations, the coarse data and the detail information can be
generated by the use of a simple set of decomposition �lters:

ck
� =

∑
‘∈ Ȧ

k+1
�

ak+1
�;‘ ck+1‘ ; (1.3)

dk
� =

∑
‘∈Ḃ

k+1
�

bk+1
�;‘ ck+1‘ (1.4)

given by the analysis coe�cients {aj
�;‘ : ‘∈Ȧ

j
� ; j= k −N +1; : : : ; k +1} and {bj

�;‘ : ‘∈ Ḃ
j
�; j= k −

N +1; : : : ; k+1}. (Index sets for the �rst of a pair of indices are indicated by a single dot and those
for the second of a pair by a double dot.)
Practical subdivision rules are sparse; that is, all but a �nite number of pj

‘;� are nonzero for any
�xed (‘; j) and also for any �xed (�; j). Indeed for all j, and except possibly for a few ‘ associated
with “boundary situations”, it is usual for these nonzero coe�cients to be an identical small set of
numbers repeated for each ‘. Moreover, the index locations � for these repeated numbers shift in a
regular way with each ‘.
In multivariate cases, each subdivision rule (1.1) imposes its own subdivision connectivity on the

points, reected in the index sets �P
k+1
‘ . For example, a well-known surface subdivision rule due to

Chaikin [5] applies to tensor-product surfaces. The index sets represented by �P
k+1
‘ in (1.1) are sets

of pairs �=(�; �), ‘=(�; �), that associate each point with its four neighbors in a quadrilateral index
lattice. Another surface subdivision rule due to Dyn, Levin, and Gregory [18,39] requires triangular
mesh connectivity; and so on.
In this study we shall restrict ourselves to univariate rules. Mesh connectivity simpli�es to simple

sequence adjacency: the geometry of curves. Of course, the results apply to tensor-product surfaces
as well, in the standard way (see, e.g., [34]). We shall leave the study of more general surface
geometry and mesh connectivity for later.
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We shall study how, given a subdivision rule de�ned by simple coe�cients pj
‘;�, we can sometimes

de�ne coe�cients aj
�;‘; bj

�;‘, and qj
‘;�, of comparable simplicity. The goal is to produce the coarse data

ck
� as a good approximation to the �ne data ck+1‘ in the sense that the approximation is geometrically
realistic and yields small errors, qk+1

‘;� dk
� .

The results we present involve only operations with the quantities Ak+1={ak+1
�; i }; Bk+1={bk+1

�;‘ }; Ck+1;
Pk+1, and Qk+1. We start with given subdivision=reconstruction coe�cients Pk+1 and generate, in
a self-contained way, the remaining reconstruction coe�cients Qk+1 and the decomposition co-
e�cients Ak+1 and Bk+1 by purely linear-algebraic means. Even though our construction will be
self-contained, it is reasonable to make some reections on issues normally associated with multires-
olutions, namely wavelet systems. Behind every multiresolution there are nested, inner-product spaces
· · · ⊂Vk−1⊂V k ⊂Vk+1⊂ · · · each spanned by a basis of scale functions �k

� that have been chosen
to have some desirable properties. The di�erence spaces W k =Vk+1 −V k , with W k ∩V k = {0},
are spanned by a basis of wavelets  k

� , again chosen for some properties. In our geometric setting
these spaces are real, Hilbert spaces of �nite dimension, which greatly simpli�es most of what we
shall be doing.
Because of the nesting,

�k
� =

∑
‘∈Ṗ

k+1
�

pk+1
‘;� �k+1

‘ ;

 k
� =

∑
‘∈Q̇

k+1
�

qk+1
‘;� �k+1

‘ ;
(1.5)

where the coe�cients pk+1
‘;� and qk+1

‘;� are as in (1.2). Conversely,

�k+1
‘ =

∑
�∈ �Ak+1

‘

ak+1
�;‘ �k

� +
∑

�∈ �Bk+1
‘

bk+1
�;‘  k

� ; (1.6)

where the coe�cients ak+1
�;‘ and bk+1

�;‘ are as in (1.3) and (1.4).
In the original work on multiresolutions, only those nested spaces were of interest for which each

scale function in any of the V j could be derived from a single function in one of the spaces, V0,
through shifting and dilating (and similarly for the wavelets). Later, this was relaxed to multiwavelets
where the bases for the spaces V j andW j were constructed via shifts and dilations applied variously
to a small set of functions. Wavelet systems that depend on shifts and dilations have come to be
known as �rst generation wavelets. Discarding the requirement that the basis functions be produced
by shifts and dilations has led to the study of second generation wavelets.
For any of the above categories of wavelet systems, a system may be required to be orthogonal

with respect to the inner product on the spaces; that is for any j; 〈�j
‘1 ; �

j
‘2〉 would be nonzero if

and only if ‘1 = ‘2; 〈 j1
‘1 ;  

j2
‘2 〉 would be nonzero if and only if ‘1 = ‘2 and j1 = j2, and 〈�j

‘1 ;  
j

‘2〉
would always be zero. Orthogonal systems were studied �rst. Later, the restrictions of complete
orthogonality were relaxed to permit semiorthogonal systems, for which only 〈�j

‘1 ;  
j

‘2〉 = 0 is re-
quired (and in which the  functions are sometimes called pre-wavelets). Recently, the consideration
of scale=wavelet systems was expanded into biorthogonal systems. In these systems there are pri-
mal scale and wavelet functions, �j

� and  j
� , dual scale and wavelet functions, �̃

j

� and  ̃
j

�, and
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orthogonality conditions:

〈�j
‘1 ; �̃

j

‘2〉= �‘1 ; ‘2 ;

〈 j
‘1 ;  ̃

j

‘2〉= �‘1 ; ‘2 ;

〈�j
‘1 ;  ̃

j

‘2〉= 0;
〈 j

‘1 ; �̃
j

‘2〉= 0:

(1.7)

The dual scales and wavelets span the dual spaces Ṽ
j
and W̃

j
, respectively. But the simplicity

of our �nite dimension setting allows us to make the identi�cations Ṽ
j ≡ V j and W̃

j ≡ W j and
to write

�k
� =

∑
‘∈Ṗ

k+1
�

pk+1
‘;� �k+1

‘ ;

 k
� =

∑
‘∈Q̇

k+1
�

qk+1
‘;� �k+1

‘ ;

�̃
k

m =
∑

‘∈ �̃A
k+1

m

ãk+1
m;‘ �

k+1
‘ ;

 ̃
k

n =
∑

‘∈ �̃B
k+1

n

b̃
k+1

n;‘ �k+1
‘ :

(1.8)

Together, (1.7) and (1.8) imply

〈 j1
‘1 ;  ̃

j2
‘2〉= �‘1 ; ‘2�j1 ; j2 : (1.9)

The relationship between Ã
k+1
={ãk+1

m;‘ } and Ak+1, and between B̃
k+1
={ãk+1

m;‘ } and Bk+1, will be given
in Section 4. For more information on wavelets and multiresolution analysis see [6,16,25,34].

2. Introduction and other work

In this paper we shall be working in a setting that is biorthogonal and second generation. Taking
a given, sparse subdivision rule pk+1

‘;� , we create from it sparse analysis coe�cients a
k+1
‘;� and bk+1

‘;� , and
we complete the system by creating the remaining sparse reconstruction coe�cient qk+1

‘;� . Implicitly,
our construction induces an inner product. The inner product used is speci�c to each subdivision
rule. Moreover, the coe�cients Ak+1; Bk+1, and Qk+1 will be chosen to respect geometric (a�ne)
issues.
There are several novelties in this setting. In the usual biorthogonal setting, all four sets of

coe�cients are to be constructed, including the subdivision coe�cients Pk+1 (alternatively, both
primal and dual scales and wavelets are to be constructed). A large part of the problem becomes
that of constructing wavelets with a certain number of vanishing moments in order to achieve a
certain approximation power. In our setting, we choose to accept the given scale functions and their
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smoothness (by accepting the scale relationship given in the subdivision rule Pk+1), and we work
from there.
In most of the wavelet literature, the inner product is chosen to be∫ +∞

−∞
f(t) �g(t) dt (2.1)

which measures the underlying function spaces V j. This norm is immutable for all scale relation-
ships. In our setting, we will not be specifying the inner product; it will be induced according to
the scale relationship and some choices we make with regard to it.
The majority of the wavelet literature arises from the theory of approximation in a function space

setting. Hence, constructions focus on the functions � and  , their duals, and various transforms
of these functions. Often, neither the scales nor wavelets, nor the coe�cients Ak+1; Bk+1; Pk+1, and
Qk+1, are subjected to conditions desirable for images, curves, or surfaces. In our setting, as in
the portion of the wavelet literature coming from graphics applications, such conditions should be
observed, e.g., that primal scale functions should be nonnegative and partition unity and that only
a�ne and vector combinations should be formed from the data points Ck+1 [23]. More speci�cally,
Eq. (1.2) speci�es that the �ne points Ck+1 are expressed in terms of a�ne combinations (with
coe�cients Pk+1) of the coarse points C k and linear combinations (with coe�cients Qk+1) of the
detail information Dk , whose elements serve geometrically as displacement vectors. This means that
the elements of Pk+1 must satisfy∑

�∈ �P k+1
‘

pk+1
‘;� = 1 (2.2)

for every ‘. This is not a condition we need to impose here, since it must be true for any Pk+1 that
represents a subdivision. Moreover, there are no geometric conditions we need to impose on Qk+1,
since the elements of Qk+1 provide the coe�cients of linear combinations of vectors. For Eq. (1.3)
to be geometrically realistic, however, we must require∑

‘∈ Ȧ
k+1
�

ak+1
�;‘ = 1 (2.3)

for every �, since (1.3) expresses the coarse points C k as a�ne combinations of the �ne points
Ck+1. Finally, for Eq. (1.4) to be geometrically realistic, we must require∑

‘∈Ḃ
k+1
�

bk+1
�;‘ = 0 (2.4)

since (1.4) represents a conversion of the points Ck+1 into the vectors Dk .
Even in the graphics literature on wavelets, there is a focus on the underlying function space

rather than the geometric data Ck+1. In our setting, although we shall try to remain aware of the
underlying scales and wavelets, we shall be supplying a construction that is purely linear algebraic
in nature and based entirely on the given subdivision coe�cients.
The most basic multiresolution analysis with sparse Ak+1; Bk+1; Pk+1, and Qk+1 is the Haar system

[34]. This system is orthogonal in the inner product (2.1), but its approximation power does not
extend beyond piecewise constants. Consequently, its geometrical and image usefulness is limited.
A simple multiresolution system built up purely on the basis of local approximations among

the data points, Ck+1, is due to Faber [20]. The construction used by Faber can be viewed as a
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very simple form of the construction we shall be using, although it is incomplete in that it was
not developed in a way to provide analysis and reconstruction coe�cients. Faber subdivision maps
piecewise linear functions into piecewise linear functions; and as such, it is the �rst interesting
subdivision rule for geometry, applying naturally to polyhedral mesh surfaces.
Using the inner product (2.1), sparse, �rst generation systems of higher approximation power

have been produced. For example, orthogonal systems by Daubechies [13], and biorthogonal sys-
tems by Cohen et al. [10], Cohen [7], Herley and Vetterli [24], Karoui and Vaillancourt [26], to
name but a few. However, most of the underlying scale functions are not entirely appropriate for
curves, surfaces, and images, for which nonnegative functions that partition unity are desirable.
Moreover, second generation systems are far more interesting in the context of graphics, since they
o�er the hope of constructing wavelets on domains and topologies that do not provide for shifts and
dilations.
A powerful method for generating biorthogonal, second generation systems is via the lifting con-

struction introduced by Sweldens [36]. He and Schr�oder use this construction to de�ne wavelets on
the surface of a sphere in [33] and show how to use lifting in a general setting in [37]. In the reverse
direction, Daubechies and Sweldens [14] show how given wavelet systems can be decomposed into
lifting steps. Hence, in this paper we are unlikely to achieve anything that could not be achieved
via lifting. However, in usual practice, the lifting method constructs wavelets in a sequence of steps
that are driven by goals formulated in terms of moments and the conventional inner product (2.1).
One of the end products is the subdivision (scale) relationship given by the coe�cients Pk+1. Our
approach, as we have stated, will be to accept a given subdivision rule and to provide, by geometric
and linear-algebraic considerations, the remainder of a system that is biorthogonal with respect to a
norm that is induced by the subdivision.
There are a number of graphically oriented papers that use the conventional inner product (2.1),

together with one or another particular subdivision, to induce a wavelet system that establishes a
multiresolution representation for curves and=or surfaces. Some of these papers focus on the creation
of their representations for the purpose of multiresolution display, for example the work by Certain
et al. [4], and that by Lounsbery et al. [30]. Some papers encode the representation in a form
that supports multiresolution editing, for example the work by Finkelstein and Salesin [21]. Other
papers are interested in compression, for example the work by DeVore et al. [15]. A particularly
notable example to cite is the work by Reissell [31], which produces a sparse biorthogonal system of
smooth, symmetric, interpolating scale functions. Reissell gives applications to compression, feature
detection, and intersection location.
What we shall be adding is a construction that, so far on all univariate subdivisions investi-

gated, has yielded primal and dual functions that are simpler than those given in these citations.
Our approach has been carried out in a preliminary fashion to a nontensor-product subdivision for
polyhedral meshes. Further work is required here. Whether symmetry is supported depends upon
the given subdivision rule. Multiresolution editing, while not covered in this paper, is achievable by
organizing detail information into a format of local coordinate frames as proposed by Forsey and
Bartels [22].
Further a�eld in the graphics literature, Kobbelt et al. [28] create multiresolution meshes from a

given mesh of arbitrary connectivity, which means that they forego the regularity present in the
subdivision (and scale=wavelet) setting to handle much more exible geometries. They encode their
multiresolution information in a form suitable for multiresolution editing. This work is worth citing
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here, because their process of �nding a coarser mesh from a �ner one involves a local minimization.
Their local minimization problems are solved iteratively at each data point, which is a computational
price they pay for handling arbitrary connectivity. The concept of local minimization is one we also
exploit, but the regularity of a subdivision setting allows us to solve the local problems universally
and in advance.
A bridge between the material of [28] and that of the subdivision setting is provided by the work

of Eck et al. [19], which introduces a means of approximating meshes with arbitrary connectivity
by meshes with subdivision connectivity.
A vast number of theoretical papers can be found that address issues associating subdivision

rules with multiresolutions and wavelet systems. As well the issue of constructing wavelets from
subdivisions, issues worth mentioning here are those of existence and stability. The former issue
asks when a basis of scales and wavelets for an in�nite nesting of spaces in L2 exists consistent
with a subdivision. The second issue asks whether approximations of L2 functions with respect to
these basis functions can be trusted to have coe�cients that are bounded in some way by the norms
of the approximated functions (i.e., provide Riesz bases). Most of this theory rests in the realm
of �rst generation wavelets. The setting of second generation wavelets that interests us is a less
explored terrain for such issues. In any event, we are attempting only to be constructive here. It is
our intention that the constructions be applied to well-established subdivisions (known to converge
and yield multiresolutions in terms of the usual norm (2.1)), and we are concerned with practical
graphics settings in which only a few levels of �nite-dimensional, nested spaces are employed.
Nevertheless, the following papers give the avor of the issues. The paper by Cohen [8] takes one
subdivision rule and discusses construction via the “cascade method”. Cohen and Daubechies [9]
discuss the issue of stability, and Dahmen and Micchelli [12] deal with existence.
Our paper is not the �rst to suggest that other inner products than (2.1) are possible for wavelet

systems. In an earlier work [32] we used the Euclidean inner product on the data points Ck+1 to
construct wavelets of very small support, and Aldroubi et al. [2] have also investigated this inner
product speci�cally for B-splines as scaling functions. Both of these papers deal with semiorthogonal
systems. For biorthogonal systems, Sweldens [35] has investigated weighted inner products.
At the core of our construction lies a matrix problem: given a matrix Pk+1 (with the subdivision

coe�cients Pk+1 as entries), complete this to a square, nonsingular matrix and �nd a left inverse
matrix[

Ak+1

Bk+1

]
[P k+1 Q k+1] =

[
I 0
0 I

]
(2.5)

from which the other coe�cients Qk+1; Ak+1, and Bk+1 are obtained. The structure of the matrices
P k+1 that arise from subdivisions is commonly slanted. This means that these matrices are banded,
and the elements of all but possibly a few of the extreme left and right columns are a repeat of
the elements of a previous column shifted down by two or more positions. In cyclic cases (for
closed, periodic curves) this shifting pattern will wrap around; elements falling o� the bottom of
a column are reintroduced at the top, producing a circulant matrix. Ideally, the structure of P k+1

should be carried over to Q k+1; A k+1, and B k+1. A paper that discusses a way of producing Qk+1

alone (to produce a semiorthogonal wavelet system) has been published by Lawton et al. [29]. Matrix
extension techniques for the biorthogonal situation are given in the following papers: Dahmen and
Micchelli employ matrix factorizations [11], Carnicer et al. [3] pay special attention to issues of
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Fig. 1. A diagram illustrating cubic B-spline subdivision.

stability, and Warren [38] uses lifting. In all cases, it is the conventional inner product (2.1) that is
used, and the work by Warren is the only one to focus on the geometrical setting.
In the univariate case, for closed, periodic curves, an abstract formulation for the matrix problem,

and its goal of producing simple Qk+1; Ak+1, and Bk+1 from a simple Pk+1, can be given by
asking when such a matrix has a slanted, circulant extension and inverse. The paper by Kautski
and Turcajov�a [27] studies some of this issue.
Finally, in a work that is hard to �t into one of the foregoing categories yet is worth mentioning,

Aldroubi et al. [1] take two subdivision rules and use them to build �rst generation biorthogonal
systems, using one subdivision for the primal system and the other for the dual system.
In Section 3, which comprises the bulk of this paper, we shall carry out our construction in a

speci�c case, using the subdivision for univariate, cubic B-splines. We do this to explore the issues
of construction in a simple setting. In Section 4 we look at the matrix view of our construction and
what that view says about the inner product on the underlying spaces. In Section 5 we summarize
the construction in general. Section 6 will contain another B-spline subdivision rule for which the
results of our construction were particularly pleasing. This section will also study a non-B-spline,
interpolatory subdivision to show our approach in a di�erent setting. We close in Section 7 with
some example applications to curves, tensor-product surfaces, and images.

3. A simple system: cubic B-splines

A simple setting is provided by cubic B-spline subdivision. A diagram illustrating this setting is
given in Fig. 1. This diagram is meant to show an interior section of a geometric �gure that may
be open or closed=periodic. We shall concentrate only on generic interior sections of subdivisions
for simplicity in presentation. From (1.2) we know the relationship between the coarse points, the
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�ne points, and the detail information. In order for (1.3) and (1.2) to be consistent, we must have

ck
� =

∑
‘∈ Ȧ

k+1
�

ak+1
�;‘ c k+1

‘

=
∑

�∈ �P k+1
‘


 ∑

‘∈ Ȧ
k+1
�

ak+1
�;‘ pk+1

‘;�


 ck

� +
∑

�∈ �Qk+1
‘


 ∑

‘∈ Ȧ
k+1
�

ak+1
�;‘ qk+1

‘; �


dk

� (3.1)

implying∑
‘∈ Ȧ

k+1
�

ak+1
�;‘ pk+1

‘;� = ��;� (3.2)

and ∑
‘∈ Ȧ

k+1
�

ak+1
�;‘ qk+1

‘; � = 0: (3.3)

(Note that (3.2) and (3.3) are represented by the top portion of (2.5).)
We shall construct the coe�cients Ak+1 to satisfy (3.2) in this subsection and the following one,

and we shall construct the coe�cients Qk+1 to satisfy (3.3) in Section 3.4. This approach lets us
ignore the second summation in (1.2) to construct Ak+1 and concentrate purely on the �rst summation,
that is, we can treat (1.1) as if it held even when Ck+1 did not derive from C k by subdivision.
According to (1.1), the relationships between the coarse and �ne points in an interior section

would be:

ck+12i−3 =
1
2c

k
i−2 +

1
2c

k
i−1;

ck+12i−2 =
1
8c

k
i−2 +

3
4c

k
i−1 +

1
8c

k
i ;

ck+12i−1 =
1
2c

k
i−1 +

1
2c

k
i ;

ck+12i = 1
8c

k
i−1 +

3
4c

k
i +

1
8c

k
i+1;

ck+12i+1 =
1
2c

k
i +

1
2c

k
i+1;

ck+12i+2 =
1
8c

k
i +

3
4c

k
i+1 +

1
8c

k
i+2;

ck+12i+3 =
1
2c

k
i+1 +

1
2c

k
i+2:

(3.4)

The indexing in these relationships has been chosen to point up the fact that the coarse point ck
i has

a natural correspondence with the �ne point ck+12i . A change in ck
i most strongly inuences ck+12i in

the subdivision. Conversely, we would expect any change in ck+12i to have the most profound impact
on ck

i in any reasonable reversal of that subdivision.
In Section 3.1 we shall set local linear conditions that could de�ne a set of analysis coe�cients

ak+1
i; � that will produce ck

i . In Section 3.2 we shall formulate a local least-squares �tting problem to
approximate ck

i . In Section 3.3 we shall show how the two problems are equivalent. In Section 3.4
we shall �nd Qk+1 coe�cients compatible with the Ak+1 coe�cients.
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3.1. Finding the coe�cients Ak+1 by local linear equations

Eqs. (3.4) can be written as follows from the point of view of ck
i :

0ck
i = ck+12i−3 + K−3;

1
8c

k
i = ck+12i−2 + K−2;

1
2c

k
i = ck+12i−1 + K−1;

3
4c

k
i = ck+12i + K0;

1
2c

k
i = ck+12i+1 + K1;

1
8c

k
i = ck+12i+2 + K2;

0ck
i = ck+12i+3 + K3;

(3.5)

where the symbols K hide the remaining terms of the equations in (3.4). Although we might be
tempted to ignore the �rst and last of these equations in what follows, we shall see subsequently that
we achieve more exibility by including them. Indeed, in Section 3.2 we shall see that including
equations even earlier and later in the sequence would make sense.
Each equation of (3.5) can be multiplied by a factor

1
8a

k+1
i;2i−2c

k
i = ak+1

i;2i−2c
k+1
2i−2 + ak+1

i;2i−2K−2

and the results can be added

1
8a

k+1
i;2i−2c

k
i +

1
2a

k+1
i;2i−1c

k
i +

3
4a

k+1
i;2i c

k
i +

1
2a

k+1
i;2i+1c

k
i +

1
8a

k+1
i;2i+2c

k
i

= ak+1
i;2i−3c

k+1
2i−3 + ak+1

i;2i−2c
k+1
2i−2 + ak+1

i;2i−1c
k+1
2i−1

+ ak+1
i;2i c

k+1
2i + ak+1

i;2i+1c
k+1
2i+1 + ak+1

i;2i+2c
k+1
2i+2 + ak+1

i;2i+3c
k+1
2i+3 (3.6)

+ ak+1
i;2i−3K

k+1
−3 + ak+1

i;2i−2K
k+1
−2 + ak+1

i;2i−1K
k+1
−1

+ ak+1
i;2i K

k+1
0 + ak+1

i;2i+1K
k+1
1 + ak+1

i;2i+2K
k+1
2 + ak+1

i;2i+3K
k+1
3 :

This provides us with several conditions. Firstly, in order to produce the point ck
i , we must have

1
8a

k+1
i;2i−2 +

1
2a

k+1
i;2i−1 +

3
4a

k+1
i;2i +

1
2a

k+1
i;2i+1 +

1
8a

k+1
i;2i+2 = 1: (3.7)

Secondly, since we would want to obtain ck
i only from the �ne points, we must have

ak+1
i;2i−3K

k+1
−3 + ak+1

i;2i−2K
k+1
−2 + ak+1

i;2i−1K
k+1
−1

+ ak+1
i;2i K

k+1
0 + ak+1

i;2i+1K
k+1
1 + ak+1

i;2i+2K
k+1
2 + ak+1

i;2i+3K
k+1
3

= ak+1
i;2i−3(− 1

2c
k
i−2 − 1

2c
k
i−1) + ak+1

i;2i−2(− 1
8c

k
i−2 − 3

4c
k
i−1)



R.H. Bartels, F.F. Samavati / Journal of Computational and Applied Mathematics 119 (2000) 29–67 39

+ ak+1
i;2i−1(− 1

2c
k
i−1) + ak+1

i;2i (− 1
8c

k
i−1 − 1

8c
k
i+1)

+ ak+1
i;2i+1(− 1

2c
k
i+1) + ak+1

i;2i+2(− 3
4c

k
i+1 − 1

8c
k
i+2) + ak+1

i;2i+3(− 1
2c

k
i+1 − 1

2c
k
i+2)

=0: (3.8)

Collecting terms of common coarse points together, this implies the following conditions:

1
2a

k+1
i;2i−3 +

1
8a

k+1
i;2i−2 = 0;

1
2a

k+1
i;2i−3 +

3
4a

k+1
i;2i−2 +

1
2a

k+1
i;2i−1 +

1
8a

k+1
i;2i = 0;

1
8a

k+1
i;2i +

1
2a

k+1
i;2i+1 +

3
4a

k+1
i;2i+2 +

1
8a

k+1
i;2i+3 = 0;

1
8a

k+1
i;2i+2 +

1
2a

k+1
i;2i+3 = 0:

(3.9)

Finally, in order to honor Eq. (2.3), we must have

ak+1
i;2i−3 + ak+1

i;2i−2 + ak+1
i;2i−1 + ak+1

i;2i + ak+1
i;2i+1 + ak+1

i;2i+2 + ak+1
i;2i+3 = 1: (3.10)

All this can be summarized as the matrix equation




1 1 1 1 1 1 1
1
2

1
8 0 0 0 0 0

1
2

3
4

1
2

1
8 0 0 0

0 1
8

1
2

3
4

1
2

1
8 0

0 0 0 1
8

1
2

3
4

1
2

0 0 0 0 0 1
8

1
2







ak+1
i;2i−3

ak+1
i;2i−2

ak+1
i;2i−1
ak+1
i;2i

ak+1
i;2i+1

ak+1
i;2i+2

ak+1
i;2i+3



=




1

0

0

1

0

0



: (3.11)

The initial row of the matrix in (3.11) is the sum of the remaining rows. Similarly, the initial
component of the right-hand side is the sum of the remaining components. Thus, the �rst equation
is redundant. Any solution of the system




1
2

1
8 0 0 0 0 0

1
2

3
4

1
2

1
8 0 0 0

0 1
8

1
2

3
4

1
2

1
8 0

0 0 0 1
8

1
2

3
4

1
2

0 0 0 0 0 1
8

1
2







ak+1
i;2i−3

ak+1
i;2i−2

ak+1
i;2i−1
ak+1
i;2i

ak+1
i;2i+1

ak+1
i;2i+2

ak+1
i;2i+3



=




0

0

1

0

0




(3.12)

will automatically satisfy (3.10) and provide us with elements Ak+1 that de�ne an a�ne combination.
Eq. (3.11) exactly expresses Eq. (3.2) for �= i.
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This system of equations is underdetermined. The general solution is given by

ak+1
i;2i−3 = (arbitrary);

ak+1
i;2i−2 =−4ak+1

i;2i−3;

ak+1
i;2i−1 = 6a

k+1
i;2i−3 + ak+1

i;2i+3 − 1
2 ;

ak+1
i;2i =−4ak+1

i;2i−3 − 4ak+1
i;2i+3 + 2;

ak+1
i;2i+1 = ak+1

i;2i−3 + 6a
k+1
i;2i+3 − 1

2 ;

ak+1
i;2i+2 =−4ak+1

i;2i+3;

ak+1
i;2i+3 = (arbitrary):

(3.13)

The e�ect of removing the �rst and last of Eqs. (3.5) can be achieved by setting ak+1
i;2i−3=ak+1

2;2i+3=0.
This produces the solution

ak+1
i;2i−3 ak+1

i;2i−2 ak+1
i;2i−1 ak+1

i;2i ak+1
i;2i+1 ak+1

i;2i+2 ak+1
i;2i+3

0 0 − 1
2 2 − 1

2 0 0
: (3.14)

This solution corresponds to system (3.12) with the variables ak+1
i;2i−3 and ak+1

i;2i+3, and correspondingly
the �rst and last columns of the matrix, removed.
This diminished system is square and nonsingular, so solution (3.14) is unique. However, as

a crude estimate, if we were to use this solution as analysis coe�cients, successive applications
could a�ect ck+12i in an unstable way: ck+12i  ck

i ≈ 2ck+12i  ck
i=2 ≈ 22ck+12i  · · · 2 jck+12i . More broadly,

the Euclidean norm of this solution is
√
4:5 ≈ 2:12132, and we might crudely expect successive

“coarsenings” of the points ck+1 to be subjected to successive convolutions whose norms behave
like powers of

√
4:5. These thoughts do not necessarily have any mathematical validity, but they do

seem to correlate to what we shall be observing in Figs. 2 and 3. This leads to the idea of �nding
the minimum norm solution of (3.13), which is given by

ak+1
i;2i−3 ak+1

i;2i−2 ak+1
i;2i−1 ak+1

i;2i ak+1
i;2i+1 ak+1

i;2i+2 ak+1
i;2i+3

23
196 − 23

49
9
28

52
49

9
28 − 23

49
23
196

: (3.15)

The norm of this solution is ≈ 1:34202. A comparison between the solutions represented by (3.14)
and (3.15) is given by Figs. 2 and 3. The dark curve plots 512 points measured around the coast-
line of an island in Norway, whose data was kindly provided by Morten D�hlen. We used three
applications of analysis coe�cients to obtain 256, 128, and 64 points in sequence. The light curve
connects the 64 points obtained as a result.
Several other possibilities, both symmetric and antisymmetric, are

ak+1
i;2i−3 ak+1

i;2i−2 ak+1
i;2i−1 ak+1

i;2i ak+1
i;2i+1 ak+1

i;2i+2 ak+1
i;2i+3

1
9 − 4

9
5
18

10
9

5
18 − 4

9
1
9

1
8 − 1

2
3
8 1 3

8 − 1
2

1
8

1
6 − 2

3
2
3

2
3

2
3 − 2

3
1
6

0 −0 − 1
4 1 1 −1 1

4

: (3.16)
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Fig. 2. 64 coarse points from 512 data points using (3.14).

Fig. 3. Using (3.15) (optimal 7-element optimal analysis coe�cients).
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Fig. 4. 64 coarse points using 1
8 ;− 1

2 ;
3
8 ; 1;

3
8 ;− 1

2 ;
1
8 (nearly optimal).

The �rst two of these possibilities are nearly optimal in the sense that their norms are only slightly
di�erent from that of (3.15). The solution that begins and ends with 1

8 is particularly interest-
ing, since these coe�cients, like the coe�cients Pk+1 for the subdivision, involve only divisions
by powers of 2, which means that they could be implemented very e�ciently on silicon, in in-
teger arithmetic using shifts. These coe�cients were used to provide Fig. 4. The solution that
begins and ends with 1

6 was the result of seeking a solution that had simple elements all ¡ 1
in magnitude. The norm of this solution is signi�cantly larger than the optimal one, and its re-
sults on the island data are worse. Finally, an exploration on whether equally simple coe�cients
existed that had “support” equal to that of the subdivision coe�cients yielded the asymmetric so-
lution given last in (3.16). The results for the island data using these last two solutions are shown
in Fig. 5.
In geometric terms, we are deciding that ck+12i has the closest association with ck

i of any of the
�ne points in terms of the subdivision mask, and then we are testing masks of analysis coe�cients
that involve ck+12i and its cohorts in wider and wider neighborhoods with respect to the subdivision
connectivity. In doing so, we have found masks of analysis coe�cients having three, �ve and seven
elements. We also notice a correlation between the norm of the solution and the extent to which the
coarse points track the original data.

3.2. Finding the coe�cients Ak+1 by local least-squares �tting

Another way of obtaining ck
i would be through direct approximation. Returning to (3.4), let us

use least squares to estimate ck
i and some of its neighboring coarse points. We shall then retain only
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Fig. 5. Nearly level and asymmetric coe�cients.

the estimate of ck
i , using similar least-squares estimates to provide for the other coarse points. As

an example, a matrix format for least squares using the equations of (3.4) would be




1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2







ck
i−2

ck
i−1

ck
i

c k
i+1

ck
i+2



≈




ck+12i−3

ck+12i−2

ck+12i−1

ck+12i

ck+12i+1

ck+12i+2

ck+12i+3




: (3.17)

The solution, via the normal equations, is given by




191
84 − 23

21 − 65
84

4
7

23
84 − 1

3
1
12

− 181
588

181
147

7
12 − 24

49 − 19
84

41
147 − 41

588

23
196 − 23

49
9
28

52
49

9
28 − 23

49
23
196

− 41
588

41
147 − 19

84 − 24
49

7
12

181
147 − 181

588

1
12 − 1

3
23
84

4
7 − 65

84 − 23
21

191
84







ck+12i−3

ck+12i−2

ck+12i−1

ck+12i

ck+12i+1

ck+12i+2

ck+12i+3




(3.18)
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and the portion of this matrix expression that extracts an approximation for ck
i is

[ 23196 − 23
49

9
28

52
49

9
28 − 23

49
23
196 ]




ck+12i−3
ck+12i−2
ck+12i−1
ck+12i

ck+12i+1

ck+12i+2

ck+12i+3



: (3.19)

This corresponds precisely to (3.15).
A natural restriction to this least-squares problem would be


1
2

1
2 0

1
8

3
4

1
8

0 1
2

1
2





ck
i−1
ck
i

c k
i+1


 ≈



ck+12i−1
ck+12i

ck+12i+1


 (3.20)

which yields the solution

[− 1
2 2 − 1

2 ]



ck+12i−1
ck+12i

ck+12i+1


 : (3.21)

This corresponds precisely to (3.14).
A natural extension would be



1
2

1
2 0 0 0 0 0

1
8

3
4

1
8 0 0 0 0

0 1
2

1
2 0 0 0 0

0 1
8

3
4

1
8 0 0 0

0 0 1
2

1
2 0 0 0

0 0 1
8

3
4

1
8 0 0

0 0 0 1
2

1
2 0 0

0 0 0 1
8

3
4

1
8 0

0 0 0 0 1
2

1
2 0

0 0 0 0 1
8

3
4

1
8

0 0 0 0 0 1
2

1
2







ck
i−3

ck
i−2

ck
i−1
ck
i

c k
i+1

ck
i+2

ck
i+3



≈




ck+12i−5
ck+12i−4
ck+12i−3
ck+12i−2
ck+12i−1
ck+12i

ck+12i+1

ck+12i+2

ck+12i+3

ck+12i+4

ck+12i+5




(3.22)

which yields an 11-element vector of analysis coe�cients:

ak+1
i;2i−5 ak+1

i;2i−4 ak+1
i;2i−3 ak+1

i;2i−2 ak+1
i;2i−1 ak+1

i;2i ak+1
i;2i+1 ak+1

i;2i+2 ak+1
i;2i+3 ak+1

i;2i+4 ak+1
i;2i+5

− 569
12038

1138
6019 − 141

926 − 2024
6019

4479
12038

5714
6019

4479
12038 − 2024

6019 − 141
926

1138
6019 − 569

12038

: (3.23)
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Fig. 6. Eleven-element optimal analysis coe�cients.

Continuing expansions in this way, we would eventually end with a least-squares approximation to
ck
i that includes all the �ne points. This is precisely the “global least-squares” reversal of subdivision
that we covered in [32]. Figs. 6 and 7 and compare the coe�cients of (3.23) with global least-squares
analysis.

3.3. Equivalence

In Section 3.1 we solved underdetermined equation systems of the form

MTA= E; (3.24)

where E stands for a vector all of whose components are zero except for one, whose value is 1.
Since the system is underdetermined, its general solution has the form

A=M�+ Z� (3.25)

for some vectors of coe�cients � and �, where the columns of Z form a basis for the nullspace of
MT. In words, A is the sum of two vectors, one in the column space of M and one in the nullspace
of MT. The vector � is uniquely speci�ed, and the totality of solutions to (3.24) is represented by
varying the components of � over all real numbers. The square of the Euclidean norm of A is given
by �TMTM�+�TZTZ�, so the optimal solution is given by setting � to the zero vector. The result
is then used as analysis coe�cients

ATCk+1 = ck
i : (3.26)



46 R.H. Bartels, F.F. Samavati / Journal of Computational and Applied Mathematics 119 (2000) 29–67

Fig. 7. Global least-squares analysis.

(Typically, the columns of Z are chosen to be orthonormal, so that �TZTZ� = �T�. Hence, near
optimal solutions can be explored by looking at vectors � with small norm.)
In Section 3.2 we found least-squares solutions to overdetermined equation systems of the form

MC k = Ck+1; (3.27)

where the matrices M were the same as those for (3.24). The solution has the form

C k = (MTM)−1MTCk+1 (3.28)

and we selected the component ck
i of C k , discarding the remaining components. This selection can

be carried out by dotting C k with a vector E that has zeros in all components except for a 1 in the
position corresponding to ck

i ; namely, the same vector E that appears in (3.24). Thus, we have

ETC k = ck
i =ET(MTM)−1MTCk+1

=ATM(MTM)−1MTCk+1

= �TMTM(MTM)−1MTCk+1 (3.29)

= �TMTCk+1

=ATCk+1

exactly as in (3.26).
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3.4. Finding the coe�cients Qk+1

We return to conditions (3.3). It is from these conditions that possible coe�cients Qk+1 can be
generated.
Take the near-optimal, 7-element version of Ak+1 shown in Fig. 4 as an example. The local pattern

around �= i is

� ‘
↓ →

2i − 4 2i − 3 2i − 2 2i − 1 2i 2i + 1 2i + 2 2i + 3 2i + 4
i − 3 − 1

2
1
8

i − 2 1 3
8 − 1

2
1
8

i − 1 − 1
2

3
8 1 3

8 − 1
2

1
8

i 1
8 − 1

2
3
8 1 3

8 − 1
2

1
8

i + 1 1
8 − 1

2
3
8 1 3

8 − 1
2

i + 2 1
8 − 1

2
3
8 1

i + 3 1
8 − 1

2

(3.30)

This pattern extends in an obvious way, of course, to the left of ‘=2i− 4 for �= i− 1; i− 2; : : :,
and it extends to the right of ‘ = 2i + 4 for � = i + 1; i + 2; : : : . However, for any � for which
qk+1
�;� = 0 when �¡ i − 3 and �¿ i + 3, the remaining parts of the pattern would be unimportant.
The subset Ak+1 of the table that would remain important provides a nullspace problem to be
solved:

Ak+1Qk+1 = 0: (3.31)

Thus, the �rst decision to make in constructing the elements of Qk+1 is the location of a convenient
subset Ak+1, which corresponds to the decision of what elements qk+1

�;� will be zero for each � and
what will be nonzero. In [32] we have given an extensive discussion of a decision methodology that
will provide vectors orthogonal to patterns such as (3.30).
To paraphrase those discussions here, what we search for is the smallest subset of this pattern

that will produce an underdetermined system of equations. Such a search proceeds incrementally as
follows:

• If qk+1
2i; � is nonzero, then we must include rows i− 1; i; i+1 and column 2i in Ak+1, which turns

(3.31) into a 3× 1 overdetermined system.
• If we allow qk+1

2i−1; � to be nonzero as well, then A
k+1 expands to include rows i− 2; i− 1; i; i+ 1

and columns 2i − 1; 2i, which turns (3.31) into a 4× 2 overdetermined system.
• Etc.
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Proceeding by inspection, we �nd that the smallest underdetermined problem size is 6×7, an example
of which is given by




− 1
2

1
8 0 0 0 0 0

1 3
8 − 1

2
1
8 0 0 0

− 1
2

3
8 1 3

8 − 1
2

1
8 0

0 1
8 − 1

2
3
8 1 3

8 − 1
2

0 0 0 1
8 − 1

2
3
8 1

0 0 0 0 0 1
8 − 1

2







qk+1
2i−4; �

qk+1
2i−3; �

qk+1
2i−2; �

qk+1
2i−1; �
qk+1
2i; �

qk+1
2i+1; �

qk+1
2i+2; �



= 0: (3.32)

This system has the general solution

qk+1
2i−4; � = qk+1

2i+2; �;

qk+1
2i−3; � = 4q

k+1
2i+2; �;

qk+1
2i−2; � = 3q

k+1
2i+2; �;

qk+1
2i−1; � =−8qk+1

2i+2; �;

qk+1
2i; � = 3q

k+1
2i+2; �;

qk+1
2i+1; � = 4q

k+1
2i+2; �;

qk+1
2i+2; � = (arbitrary)

(3.33)

and setting qk+1
2i+2; � to

1
8 produces

qk+1
2i−4; � qk+1

2i−3; � qk+1
2i−2; � qk+1

2i−1; � qk+1
2i; � qk+1

2i+1; � qk+1
2i+2; �

1
8

1
2

3
8 −1 3

8
1
2

1
8

: (3.34)

The general approach to �nding a vector satisfying a nullspace equation such as (3.32) is as
follows:

1. Reorder the columns of the matrix, if necessary, so that its leftmost columns form a nonsingular
matrix. (If this cannot be done, the nullspace equation can be reduced at least by one row and
column.)

2. The nullspace equation can be partitioned as follows:

[X Y ]
[
vX
vY

]
= 0; (3.35)

where X is nonsingular. vX is the portion of the (possibly reordered) nullspace vector correspond-
ing to X , and vY corresponds to Y .

3. Choose vY arbitrarily (nonzero), and set

vX =−X−1YvY : (3.36)

The veri�cation that [vX vY ]
T is a vector in the nullspace of the matrix is simple.
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Fig. 8. Interaction pattern example for a two-slanted system.

There is a short cut to this solution process if the section of the A matrix in question is two
slanted and its rows have identical nonzero elements, for example, the case of �ve nonzeros would
be: 



· · · 0 0 0 0 0 0 0 0 · · ·
· · · d e 0 0 0 0 0 0 · · ·
· · · b c d e 0 0 0 0 · · ·
· · · 0 a b c d e 0 0 · · ·
· · · 0 0 0 a b c d e · · ·
· · · 0 0 0 0 0 a b c · · ·
· · · 0 0 0 0 0 0 0 a · · ·
· · · 0 0 0 0 0 0 0 0 · · ·



: (3.37)

To �nd a matrix Q corresponding to this section, that is, one all of whose columns are in the
nullspace of the section, we �rst �x on the number and location of positions in one of these columns
where we will permit nonzeros to occur. One such position would interact with either two or three
rows of A, depending on where in the column that position is chosen to be. Two contiguous such
column positions would interact with either two or three rows, and so on. Fig. 8 shows how the
interactions progress (indicated by arrows) for one selection sequence. By inspection it is evident
that the addition of each two consecutive column positions will, on the average, result in only one
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further row interaction. At some point, the number of column positions will exceed the number of
row interactions, and this will correspond to an underdetermined set of conditions. It will be further
noticed that such an underdetermined situation in general settings will arise when the number of
contiguous column positions equals the number of nonzeros in any row, and the placement of the
contiguous positions is such that the rows interact in an even number of postions with the column.
In our example of the matrix section given in (3.38), the following is the �rst situation in which

an underdetermined set of conditions results:

rd+ se = 0;

rb+ sc + td+ ue = 0;

sa+ tb+ uc + vd= 0;

ua+ vb= 0;

(3.38)

where r; s; t; u; v represent the contents of the column positions in Q. The interaction of one of the
rows of A and the column of Q in question is

A : · · · · · · 0 a b c d e 0 · · · ;
Q : · · · 0 r s t u v 0 0 · · · : (3.39)

The third equation in (3.38) corresponds to the conditions that the two vectors in (3.39) have a zero
dot product. A classical trick to achieve this zero dot product, veri�able by inspection, is to let the
nonzeros in the vector Q be the nonzeros in the vector A, reversed in order and alternating in sign:

A : · · · · · · 0 a b c d e 0 · · · ;
Q : · · · 0 e −d c −b a 0 0 · · · : (3.40)

The other equations of (3.38) will also be satis�ed by this choice, in this example as well as in the
general two-slanted situation.
These observations lead to a short cut for the general, shifted column of Q, corresponding to a

nullspace equation of the form (3.37), of whatever size, provided A is two slanted. The solution to
the nullspace equation is given by a column of Q that contains the nonzeros of the general column
of A, reversed in order, alternated in sign, and shifted in row position so as to overlap the nonzeros
of A in an even number of rows. For the speci�c case given in (3.32) for example, we take the
vector,

[ · · · 0 0 1
8 − 1

2
3
8 1

3
8 − 1

2
1
8 0 0 · · · ]; (3.41)

shift the entries so that the nonzero vector entries overlap the row entries in an even number of
positions

[ · · · 0 1
8 − 1

2
3
8 1

3
8 − 1

2
1
8 0 0 0 · · · ]; (3.42)

reverse the order of the nonzero entries (which is invisible in this case because of symmetry)

[ · · · 0 1
8 − 1

2
3
8 1

3
8 − 1

2
1
8 0 0 0 · · · ] (3.43)
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and multiply each alternate entry by −1
[ · · · 0 1

8
1
2
3
8 − 1 3

8
1
2
1
8 0 0 0 · · · ] (3.44)

and we arrive at the solution given in (3.34). For situations that are not two slanted, of course, a
solution can be found by linear algebra, e.g., as indicated in (3.36). However, since a vast number
of univariate subdivisions have two-slanted matrices, this short cut is worth mentioning.
The short cut we have described in the �nite case is something that is well known in the in�nite

setting of wavelets, for example, see the reference by Stollnitz et al. [34]. To quote from this
reference: “This recipe for creating a wavelet sequence from a scaling function sequence [sequence
reversal together with sign alternation] is common to many wavelet constructions on the in�nite real
line; such sequences are known as quadrature mirror �lters”.
How we assign the index � is a matter of our convenience (provided, ultimately, that the indices

of the coe�cients in the sets Pk+1, Qk+1, Ak+1, and Bk+1 are in conformance). So we shall let �= i in
(3.34). Replacing i by i+ j for j= : : : ;−1; 0; 1; : : : generates the remaining parts of Qk+1 associated
with interior points of the data. For the boundary points, special systems of the form (3.31) must
be constructed and solved; [32] contains a discussion.

3.5. Finding the coe�cients Bk+1

In order for (1.4) and (1.2) to be consistent, we must have

dk
� =

∑
‘∈Ḃ

k+1
�

bk+1
�;‘ ck+1‘

=
∑

�∈ �P k+1
‘


 ∑

‘∈Ḃ
k+1
�

bk+1
�;‘ pk+1

‘;�


 ck

� +
∑

�∈ �Qk+1
‘


 ∑

‘∈Ḃ
k+1
�

bk+1
�;‘ qk+1

‘; �


dk

� (3.45)

implying∑
‘∈Ḃ

k+1
�

bk+1
�;‘ qk+1

‘; � = ��;� (3.46)

and ∑
‘∈Ḃ

k+1
�

bk+1
�;‘ pk+1

‘;� = 0: (3.47)

(Note that (3.46) and (3.47) represent the bottom portion of (2.5).)
The �nal phase of the construction process, producing Bk+1, echoes the construction of Ak+1. Now

however, the elements of Qk+1 play the role formerly played by Pk+1. We shall construct Bk+1 to
satisfy (3.46). The expectation that (3.47) also holds will be covered in Section 5.
Take Eq. (1.2) and ignore the �rst summation to obtain

ck+1‘ =
∑

�∈ �Q k+1
‘

qk+1
‘;� dk

� : (3.48)
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Focusing on ck+12i yields

ck+12i−5 =
1
2d

k
i−3 − 3

8d
k
i−2 +

1
2d

k
i−1;

ck+12i−4 =
1
8d

k
i−3 +

3
8d

k
i−2 +

3
8d

k
i−1 +

1
8d

k
i ;

ck+12i−3 =
1
2d

k
i−2 − dk

i−1 +
1
2d

k
i ;

ck+12i−2 =
1
8d

k
i−2 +

3
8d

k
i−1 +

3
8d

k
i +

1
8d

k
i+1;

ck+12i−1 =
1
2d

k
i−1 − dk

i +
1
2d

k
i+1;

ck+12i = 1
8d

k
i−1 +

3
8d

k
i +

3
8d

k
i+1 +

1
8d

k
i+2;

ck+12i+1 =
1
2d

k
i − 3

8d
k
i+1 +

1
2d

k
i+2;

ck+12i+2 =
1
8d

k
i +

3
8d

k
i+1 +

3
8d

k
i+2 +

1
8d

k
i+3;

ck+12i+3 =
1
2d

k
i+1 − 3

8d
k
i+2 +

1
2d

k
i+3:

(3.49)

Multiply the equation in ck+1‘ by bk+1
i; ‘ and add up. The implications to be drawn from the result

yield a matrix equation corresponding to (3.12):




1
2

1
8 0 0 0 0 0 0 0

−1 3
8

1
2

1
8 0 0 0 0 0

1
2

3
8 −1 3

8
1
2

1
8 0 0 0

0 1
8

1
2

3
8 −1 3

8
1
2

1
8 0

0 0 0 1
8

1
2

3
8 −1 3

8
1
2

0 0 0 0 0 1
8

1
2

3
8 −1

0 0 0 0 0 0 0 1
8

1
2







bk+1
i;2i−5

bk+1
i;2i−4

bk+1
i;2i−3

bk+1
i;2i−2

bk+1
i;2i−1
bk+1
i;2i

bk+1
i;2i+1

bk+1
i;2i+2

bk+1
i;2i+3




=




0

0

0

1

0

0

0



: (3.50)

This matrix equation is not su�cient to enforce geometric validity, however. In order to respect Eq.
(2.4), the matrix equation must be expanded to one resembling (3.11):




1 1 1 1 1 1 1 1 1
1
2

1
8 0 0 0 0 0 0 0

−1 3
8

1
2

1
8 0 0 0 0 0

1
2

3
8 −1 3

8
1
2

1
8 0 0 0

0 1
8

1
2

3
8 −1 3

8
1
2

1
8 0

0 0 0 1
8

1
2

3
8 −1 3

8
1
2

0 0 0 0 0 1
8

1
2

3
8 −1

0 0 0 0 0 0 0 1
8

1
2







bk+1
i;2i−5

bk+1
i;2i−4

bk+1
i;2i−3

bk+1
i;2i−2

bk+1
i;2i−1
bk+1
i;2i

bk+1
i;2i+1

bk+1
i;2i+2

bk+1
i;2i+3




=




0

0

0

0

1

0

0

0




: (3.51)
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This matrix equation has the following general solution:

bk+1
i;2i−5 =−bk+1

i;2i+3;

bk+1
i;2i−4 = 4b

k+1
i;2i+3;

bk+1
i;2i−3 =−2bk+1

i;2i+3 − 1
8 ;

bk+1
i;2i−2 =−12bk+1

i;2i+3 +
1
2 ;

bk+1
i;2i−1 =− 3

4 ;

bk+1
i;2i = 12b

k+1
i;2i+3 +

1
2 ;

bk+1
i;2i+1 = 2b

k+1
i;2i+3 − 1

8 ;

bk+1
i;2i+2 =−4bk+1

i;2i+3;

bk+1
i;2i+3 = (arbitrary):

(3.52)

Clearly, the minimal norm solution is given when b2i+3 = 0:

bk+1
i;2i−5 bk+1

i;2i−4 bk+1
i;2i−3 bk+1

i;2i−2 bk+1
i;2i−1 bk+1

i;2i bk+1
i;2i+1 bk+1

i;2i+2 bk+1
i;2i+3

0 0 − 1
8

1
2 − 3

4
1
2 − 1

8 0 0
: (3.53)

The results of Section 3.3 hold here as well. This minimal solution is also given by the �fth row
of (MMT)−1M , where M is the matrix in (3.51).

4. Matrices and inner products

Except for the interpretation of a biorthogonal system as a semiorthogonal system having a di�erent
inner product, the material in this section reects and summarizes material in [34].
We have taken pains to express our problems and the results in terms of the local indices i and

2i and the individual coe�cients. Here, however, we shall show small examples of the results in a
matrix format. Eq. (1.2) is often given as the matrix equation

Ck+1 = Pk+1C k +Qk+1Dk (4.1)

and for the case in which the Ck+1 would consist of 10 points on a closed curve, Pk+1 and Qk+1

would be as follows:

Pk+1 =




1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

0 1
8

3
4

1
8 0

0 0 1
2

1
2 0

0 0 1
8

3
4

1
8

0 0 0 1
2

1
2

1
8 0 0 1

8
3
4

1
2 0 0 0 1

2
3
4

1
8 0 0 1

8




; (4.2)
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Qk+1 =




−1 1
2 0 0 1

2
3
8

3
8

1
8 0 1

8
1
2 −1 1

2 0 0
1
8

3
8

3
8

1
8 0

0 1
2 −1 1

2 0

0 1
8

3
8

3
8

1
8

0 0 1
2 −1 1

2
1
8 0 1

8
3
8

3
8

1
2 0 0 1

2 −1
3
8

1
8 0 1

8
3
8




: (4.3)

Similarly (1.3) and (1.4) have the matrix form

C k = Ak+1Ck+1;

Dk = Bk+1Ck+1
(4.4)

for which we have

Ak+1 =




3
8 − 1

2
1
8 0 0 0 1

8 − 1
2

3
8 1

3
8 1 3

8 − 1
2

1
8 0 0 0 1

8 − 1
2

1
8 − 1

2
3
8 1 3

8 − 1
2

1
8 0 0 0

0 0 1
8 − 1

2
3
8 1 3

8 − 1
2

1
8 0

1
8 0 0 0 1

8 − 1
2

3
8 1 3

8 − 1
2



; (4.5)

Bk+1 =




− 3
4

1
2 − 1

8 0 0 0 0 0 − 1
8

1
2

− 1
8

1
2 − 3

4
1
2 − 1

8 0 0 0 0 0

0 0 − 1
8

1
2 − 3

4
1
2 − 1

8 0 0 0

0 0 0 0 − 1
8

1
2 − 3

4
1
2 − 1

8 0

− 1
8 0 0 0 0 0 − 1

8
1
2 − 3

4
1
2



: (4.6)

Returning to (1.7) and (1.8), we see that

�m;� = 〈�̃k

m; �
k
� 〉

=

〈 ∑
i∈ �̃A

k+1

m

ãk+1
m; i �

k+1
i ;

∑
j∈Ṗ

k+1
�

pk+1
j; � �k+1

j

〉

=
∑

i∈ �̃A
k+1

m

∑
j∈Ṗ

k+1
�

ãk+1
m; i 〈�k+1

i ; �k+1
j 〉pk+1

j; � : (4.7)

That is

I = Ã
k+1
�k+1Pk+1; (4.8)
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where

�k+1 =




...
· · · 〈�k+1

i ; �k+1
j 〉 · · ·

...


 (4.9)

is the Gram matrix for the inner product on the space Vk+1. Likewise

I = B̃
k+1
�k+1Q k+1;

0= Ã
k+1
�k+1Q k+1;

0= B̃
k+1
�k+1P k+1:

(4.10)

This provides us with the identities

Ak+1 = Ã
k+1
�k+1;

Bk+1 = B̃
k+1
�k+1:

(4.11)

Moreover, C k and Dk are the projections of Ck+1 onto their respective subspaces, range(Pk+1) and
range(Qk+1):

C k = (Pk+1T�k+1Pk+1)−1Pk+1T�k+1Ck+1

= (Pk+1T�k+1Pk+1)−1Pk+1T�k+1[Pk+1C k +Qk+1Dk] (4.12)

and

Dk = (Qk+1T�k+1Qk+1)−1Qk+1T�k+1Ck+1

= (Qk+1T�k+1Qk+1)−1Qk+1T�k+1[Pk+1C k +Qk+1Dk] (4.13)

which provides us with two more identities:

Ak+1 = Ã
k+1
�k+1 = (Pk+1T�k+1Pk+1)−1Pk+1T�k+1;

Bk+1 = B̃
k+1
�k+1 = (Qk+1T�k+1Qk+1)−1Qk+1T�k+1: (4.14)

A multiresolution system is semiorthogonal when

Pk+1T�k+1Qk+1 = 0: (4.15)

In that context, we note that any biorthogonal system is semiorthogonal with respect to some inner
product

Pk+1T[Ak+1TBk+1T]
[
Ak+1

Bk+1

]
Qk+1 = 0; (4.16)

where

[Ak+1T Bk+1T]
[
Ak+1

Bk+1

]
=�k+1: (4.17)

Plugging (4.17) into (4.12) and (4.13) bears this out.
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Using this, the Gram matrix for our construction for cubic B-spline subdivision is

�k+1 =




29
32 − 5

16
27
64 − 1

8
1
8 − 1

8
1
8 − 1

8
27
64 − 5

16

− 5
16 2 − 5

16 − 3
4 − 1

8
1
4 − 1

8
1
4 − 1

8 − 3
4

27
64 − 5

16
29
32 − 5

16
27
64 − 1

8
1
8 − 1

8
1
8 − 1

8

− 1
8 − 3

4 − 5
16 2 − 5

16 − 3
4 − 1

8
1
4 − 1

8
1
4

1
8 − 1

8
27
64 − 5

16
29
32 − 5

16
27
64 − 1

8
1
8 − 1

8

− 1
8

1
4 − 1

8 − 3
4 − 5

16 2 − 5
16 − 3

4 − 1
8

1
4

1
8 − 1

8
1
8 − 1

8
27
64 − 5

16
29
32 − 5

16
27
64 − 1

8

− 1
8

1
4 − 1

8
1
4 − 1

8 − 3
4 − 5

16 2 − 5
16 − 3

4
27
64 − 1

8
1
8 − 1

8
1
8 − 1

8
27
64 − 5

16
29
32 − 5

16

− 5
16 − 3

4 − 1
8

1
4 − 1

8
1
4 − 1

8 − 3
4 − 5

16 2




: (4.18)

The inner product with respect to which we are establishing a multiresolution system can be
inferred from �k+1. Given any f; g∈Vk+1, represent f as f=

∑
i fi�k+1

i , g as g=
∑

j gj�k+1
j , then

〈f; g〉= FT�k+1G, where F and G represent the coe�cient vectors in the representations of f and
g, respectively.
If we had known about the inner product represented by �k+1 in advance and had sought to �nd

a semiorthogonal system with respect to both the inner product and the subdivision represented by
Pk+1, then we would have formed the product

Pk+1T�k+1 =




3
8 − 1

2
1
8 0 0 0 1

8 − 1
2

3
8 1

3
8 1 3

8 − 1
2

1
8 0 0 0 1

8 − 1
2

1
8 − 1

2
3
8 1 3

8 − 1
2

1
8 0 0 0

0 0 1
8 − 1

2
3
8 1 3

8 − 1
2

1
8 0

1
8 0 0 0 1

8 − 1
2

3
8 1 3

8 − 1
2




(4.19)

and used the shortcut from [32] given in (3.41)–(3.44) to �nd a matrix Qk+1T orthogonal to this
product. We would have obtained the same results as those given in (3.30) and repeated in (4.3).

5. General construction

The elements of the construction have been as follows:

1. Given a subdivision, select any representative �ne point ck+1� , as shown in (1.1).
2. Decide which coarse point ck

 is to be associated with ck+1� , and write down all equations involving
this coarse point. These equations will involve �ne points in some connection neighborhood of
ck+1� .

3. Optionally, add additional equations involving �ne points in some enclosing connection neigh-
borhood of ck+1� .

4. The selected equations can be written as a matrix system corresponding to (3.17). The object of
the selection process is to provide such a matrix system that is overdetermined. If this selection
was made correctly, each row of the matrix will sum to one.
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5. Alternatively, the matrix can be transposed (as (3.24)) to provide an underdetermined system
for �lter coe�cients Ak+1 local to ak+1

;� , yielding a matrix system corresponding to (3.5).
6. The optimal solution to the system in step 5 is given by solving the overdetermined system of
step 4 in the least-squares sense. Nearby solutions can be explored by �nding the general solution
(as in (3.25)) of the system in step 5.

7. Having produced the elements of Ak+1, focus on the elements local to ak+1
;� , that is, those ak+1

�;‘
whose �rst index is in the index neighborhood of  and those whose second index is in the index
neighborhood of �. (The array (3.30) shows an example with  = i and � = 2i.) Search for a
set of interactions between unknown qk+1

‘;� that represent an underdetermined equation set. Fig. 8
illustrates how this search proceeds.

8. Using the information from step 7 and the steps laid out in Section 3.4, produce elements of
Qk+1 that interact with ak+1

;� and its neighboring elements of Ak+1.
9. The elements of Qk+1 contribute to the de�nition of ck+1� according to the reconstruction equations
(1.2). As in step 2, focus on the coarse point ck

 and its corresponding �ne point c
k+1
� . Select the

Q portion of Eqs. (1.2) for this index pair as well as adjacent �rst indices about  and second
indices about � as in (3.49).

10. From the equations of step 9 form a matrix system for elements of Bk+1 according to the model of
(3.50), and augment this system as shown in (3.51). The object of step 9 is to choose equations
so that the result is in underdetermined system for the elements of Bk+1 local to the index pair
(; �).

11. Finish the process by solving the system in step 10. As in step 6, the transpose of the system
in step 10 will yield the optimal solution via least squares, and other solutions may be explored
directly from the underdetermined system of step 10.

Steps 1–11 must be carried out for each distinctly di�erent connection neighborhood of the sub-
division; typically, this will be once for each generic category of interior point and once for each
generic category of boundary point.
We are not in a position to give any theory establishing when this construction process can be

expected to work. However, the intuition and observations we used to invent the construction may
serve as insights to others who could provide necessary and=or su�cient conditions for its success.
The intuition and observations might also lend a feeling of hope to those who want to experiment
with the construction.
Each step of the construction depends upon �nding an underdetermined set of equations to solve.

Except for boundary situations, this is accomplished by taking a regular slice of a given matrix
and exploring how the rows or columns of that matrix interact with potentially nonzero locations
in the general column or row of a matrix to be constructed. If the regular slice is two slanted or
better, then Fig. 8 illustrates how such an exploration proceeds and indicates that it must arrive at
an underdetermined system involving a small portion of the regular slice.
The solution of the underdetermined solution must succeed, if the regular slice portion has full

rank. This is expected to be true for slanted systems directly from the shifted structure of their
rows or columns. By the regularity of the situation, the solution produces one row or column of a
constructed matrix that echos the slanting of the given matrix.
At the end of the full process, the vectors of coe�cients in Ak+1 have been constructed to span

the range space of the matrix formed by the coe�cients Pk+1. The coe�cients Qk+1 have then been
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constructed to span the nullspace of the matrix formed by the coe�cients Ak+1, which makes them
span the nullspace of Pk+1. The construction to follow will generate vectors of coe�cients Bk+1 that
span the range space of the matrix formed by the coe�cients Qk+1, which will put them in the
nullspace of Pk+1, causing (3.47) to hold as an additional result.

6. Two further examples

To gain more experience with this approach, we o�er two further examples. In Section 6.1, we
carry out our approach on Chaikin (quadratic B-spline) subdivision. The optimal Ak+1 coe�cients
comprise simply the numbers 1

4 and
3
4 , as do all other �lter coe�cients, which produces a particularly

simple and appealing system. In Section 6.2, to depart from B-splines, we build a system of �lter
coe�cients for the curve subdivision due to Dyn et al. [17]. This also provides an example of our
approach applied to an interpolatory subdivision.

6.1. A simpler B-spline system: Chaikin

We provide another example of this approach for which the results were particularly good, namely
the example provided by Chaikin’s curve subdivision, for which the underlying scale functions are
the quadratic B-splines.
Chaikin subdivision is given by

ck+12i = pk+1
2i; i−1c

k
i−1 + pk+1

2i; i c
k+1
i = 1

4c
k
i−1 +

3
4c

k
i ;

ck+12i+1 = pk+1
2i+1; ic

k
i + pk+1

2i+1; i+1c
k+1
i+1 =

3
4c

k
i +

1
4c

k
i+1:

(6.1)

An optimal set of Ak+1 coe�cients of length 4 is given by

ck
i = ak+1

i;2i−1c
k+1
2i−1 + ak+1

i;2i c
k+1
2i + ak+1

i;2i+1c
k+1
2i+1 + ak+1

i;2i+2c
k+1
2i+2

=− 1
4c

k+1
2i−1 +

3
4c

k+1
2i + 3

4c
k+1
2i+1 − 1

4c
k+1
2i+2: (6.2)

The corresponding Qk+1 coe�cients appear in the following:

ck+12i =Pk+1C k + qk+1
2i; i−1d

k
i−1 + qk+1

2i; i d
k+1
i

=Pk+1C k + 1
4d

k
i−1 − 3

4d
k
i ;

ck+12i+1 =P
k+1C k + qk+1

2i+1; id
k
i + qk+1

2i+1; i+1d
k+1
i+1

=Pk+1C k + 3
4d

k
i − 1

4d
k
i+1;

(6.3)

where Pk+1C k hides the terms in (6.1). Finally, the Bk+1 coe�cients are given by

dk
i = bk+1

i;2i−1c
k+1
2i−1 + bk+1

i;2i c
k+1
2i + bk+1

i;2i+1c
k+1
2i+1 + bi;2i+2ck+12i+2

= 1
4c

k+1
2i−1 − 3

4c
k+1
2i + 3

4c
k+1
2i+1 − 1

4c
k+1
2i+2: (6.4)
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In matrix terms for a small cyclic system this would amount to

Pk+1 =




3
4

1
4 0 0

1
4

3
4 0 0

0 3
4

1
4 0

0 1
4

3
4 0

0 0 3
4

1
4

0 0 1
4

3
4

1
4 0 0 3

4
3
4 0 0 1

4




; (6.5)

Qk+1 =




3
4 − 1

4 0 0
1
4 − 3

4 0 0

0 3
4 − 1

4 0

0 1
4 − 3

4 0

0 0 3
4 − 1

4

0 0 1
4 − 3

4

− 1
4 0 0 3

4

− 3
4 0 0 1

4




; (6.6)

Ak+1 =




3
4 − 1

4 0 0 0 0 − 1
4

3
4

− 1
4

3
4

3
4 − 1

4 0 0 0 0

0 0 − 1
4

3
4

3
4 − 1

4 0 0

0 0 0 0 − 1
4

3
4

3
4 − 1

4


 ; (6.7)

Bk+1 =




3
4 − 1

4 0 0 0 0 1
4 − 3

4
1
4 − 3

4
3
4 − 1

4 0 0 0 0

0 0 1
4 − 3

4
3
4 − 1

4 0 0

0 0 0 0 1
4 − 3

4
3
4 − 1

4


 : (6.8)

A small section of a Gram matrix induced by this system of coe�cients would be

�k+1 =




5
4 − 3

4 0 0 0 0 0 0

− 3
4

5
4 0 0 0 0 0 0

0 0 5
4 − 3

4 0 0 0 0

0 0 − 3
4

5
4 0 0 0 0

0 0 0 0 5
4 − 3

4 0 0

0 0 0 0 − 3
4

5
4 0 0

0 0 0 0 0 0 5
4 − 3

4

0 0 0 0 0 0 − 3
4

5
4




: (6.9)
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6.2. Four-point interpolatory subdivision

The version of the subdivision given in [17] that we use will be with w = 1
16 :

ck+12i =pk+1
2i; i c

k+1
i

=1ck
i ;

ck+12i+1 =pk+1
2i+1; i−1c

k
i−1 + pk+1

2i+1; ic
k
i + pk+1

2i+1; i+1c
k+1
i+1 + pk+1

2i+1; i+2c
k+1
i+2

=− 1
16c

k
i−1 +

9
16c

k
i +

9
16c

k
i+1 − 1

16c
k
i+2:

(6.10)

Clearly, the association of each coarse point ck
i is with the �ne point c

k+1
2i . Just as clearly there is an

obvious multiresolution to be formed: decimate the (k + 1)-points by taking those of even index as
the k-points and retain the residuals ck+12i+1−(− 1

16c
k
i−1+

9
16c

k
i +

9
16c

k
i+1− 1

16c
k
i+2) as the detail information

(required only for the �ne points of odd index). Hence, 2N items of �ne data would be represented
as N items of coarse data and N items of detail information, which is what one generally expects
from one stage of a multiresolution. This is suggestive of Faber’s treatment of piecewise linear data.
We reject this approach for two reasons. Firstly, it is too obvious and too trivial to represent

any contribution. Secondly, going back to the original motivation for considering the reversal of
subdivision rules, we would like to assume that the data Ck+1 might come from measurements, e.g.,
from a laser range �nder. As such, any point ck+12i would be associated with some measurement error,
and we might hope that a coarse point ck

i that was approximated from ck+12i and its surrounding
points would be a better choice than would be taking ck

i as any one of the �ne points alone.
An optimal set of Ak+1 coe�cients of length 9 is given by

ck
i =

j=4∑
j=−4

ak+1
i;2i+j c2i+j

= 3
161 ck+12i−4 + 0c

k+1
2i−3 − 24

161c
k+1
2i−2

+ 48
161c

k+1
2i−1 +

107
161c

k+1
2i + 48

161c
k+1
2i+1

− 24
161c

k+1
2i+2 + 0c

k+1
2i+3 +

3
161c

k+1
2i+4:

(6.11)

The norm of this set is 0:6645962733. Interestingly, any optimal set of Ak+1 coe�cients of length
less than 9 reduces simply to ak+1

i;2i = 1 and ak+1
i; j = 0 for j 6= 2i, which corresponds to the trivial

(Faber-style) decimation that we rejected at the beginning of this section.
A suboptimal set of Ak+1 coe�cients of length 9 is given by

ck
i =

1
64c

k+1
2i−4 + 0c

k+1
2i−3 − 1

8c
k+1
2i−2

+ 1
4c

k+1
2i−1 +

23
32c

k+1
2i + 1

4c
k+1
2i+1 (6.12)

− 1
8c

k+1
2i+2 + 0c

k+1
2i+3 +

1
64c

k+1
2i+4:
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This set has the advantage that it comprises only inverse powers of 2. Moreover, the norm of this
set is 0:6733398438, which is only slightly larger than the optimal set of the same length. It is this
set of Ak+1 that we use to generate the remaining �lter coe�cients.
The corresponding Qk+1 coe�cients are given by

ck+12i =Pk+1C k + qk+1
2i; i d

k
i + qk+1

2i; i+1d
k+1
i+1

=Pk+1C k − 1
4d

k
i − 1

4d
k
i+1;

ck+12i+1 =P
k+1C k + qk+1

2i+1; i−1d
k
i−1 + qk+1

2i+1; id
k+1
i

+ qk+1
2i+1; i+1d

k
i+1 + qk+1

2i+1; i+2d
k+1
i+2 + qk+1

2i+1; i+3d
k+1
i+3

=Pk+1C k + 1
64d

k
i−1 − 1

8d
k+1
i

+ 23
32d

k
i+1 − 1

8d
k+1
i+2 +

1
64d

k+1
i+3 ;

(6.13)

where Pk+1C k hides the terms in (6.10).
Finally, the Bk+1 coe�cients are given by

dk
i = bk+1

i;2i−4 c
k+1
2i−4 + bk+1

i;2i−3 c
k+1
2i−3 + bk+1

i;2i−2 c
k+1
2i−2 + bk+1

i;2i−1 c
k+1
2i−1

+ bk+1
i;2i ck+12i + bi;2i+1 ck+12i+1 + bi;2i+2 ck+12i+2

= 1
16c

k+1
2i−4 + 0c

k+1
2i−3 − 9

16c
k+1
2i−2 + 1c

k+1
2i−1

− 9
16c

k+1
2i + 0ck+12i+1 +

1
16c

k+1
2i+2:

(6.14)

In matrix terms for a small cyclic system this would amount to

Pk+1 =




1 0 0 0 0
9
16

9
16 − 1

16 0 − 1
16

0 1 0 0 0

− 1
16

9
16

9
16 − 1

16 0

0 0 1 0 0

0 − 1
16

9
16

9
16 − 1

16

0 0 0 1 0

− 1
16 0 − 1

16
9
16

9
16

0 0 0 0 1
9
16 − 1

16 0 − 1
16

9
16




; (6.15)
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Ak+1 =




23
32

1
4 − 1

8 0 1
64 0 1

64 0 − 1
8

1
4

− 1
8

1
4

23
32

1
4 − 1

8 0 1
64 0 1

64 0
1
64 0 − 1

8
1
4

23
32

1
4 − 1

8 0 1
64 0

1
64 0 1

64 0 − 1
8

1
4

23
32

1
4 − 1

8 0

− 1
8 0 1

64 0 1
64 0 − 1

8
1
4

23
32

1
4



; (6.16)

Qk+1 =




− 1
4 − 1

4 0 0 0

− 1
8

23
32 − 1

8
1
64

1
64

0 − 1
4 − 1

4 0 0
1
64 − 1

8
23
32 − 1

8
1
64

0 0 − 1
4 − 1

4 0
1
64

1
64 − 1

8
23
32 − 1

8

0 0 0 − 1
4 − 1

4

− 1
8

1
64

1
64 − 1

8
23
32

− 1
4 0 0 0 − 1

4
23
32 − 1

8
1
64

1
64 − 1

8




; (6.17)

Bk+1 =




− 9
16 0 1

16 0 0 0 1
16 0 − 9

16 1

− 9
16 1 − 9

16 0 1
16 0 0 0 1

16 0
1
16 0 − 9

16 1 − 9
16 0 1

16 0 0 0

0 0 1
16 0 − 9

16 1 − 9
16 0 1

16 0
1
16 0 0 0 1

16 0 − 9
16 1 − 9

16 0



: (6.18)

The Gram matrix �k+1 induced by this system of coe�cients consists of the following two rows,
repeated with a shift of two positions to the right on each repetition:[ · · · 0 1

4096
1
256 − 33

1024
9
256

1
16 − 53

128
2435
2048 − 53

128
1
16

9
256 − 33

1024
1
256

1
4096 0 · · ·

· · · 0 0 0 1
256 0 9

256
1
16 − 53

128
9
8 − 53

128
1
16

9
256 0 1

256 0 · · ·

]
:

The diagonal elements are 2435
2048 and

9
8 .

7. Sample applications

The Chaikin subdivision=reconstruction presented in Section 6 is so appealingly simple, that the
sample applications given in Figs. 9 through 10, which constitute our main examples, are given
using this system. In order to carry out reverse subdivision and reconstruction on these examples,
which use tensor-product data that, for the image data is not periodic and for the surface data is
periodic in only one direction, we had to obtain a nonperiodic system for Chaikin subdivision, which
we list below. Note that the sign patterns in Qk+1 and Bk+1 have been adjusted. The wavelets and
dual wavelets that the columns of Qk+1 and rows of Bk+1 represent are not individually symmetric,
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Fig. 9. Fox image.
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Fig. 10. Victor Hugo.
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but we have chosen a sign pattern that forms a symmetric set of wavelets on the closed bounded
interval of their domain. Only the matrices for dim(V k) = 6 and dim(Vk+1) = 10 are given. The
expansion to larger dimensions should be obvious:

P k+1 =




1 0 0 0 0 0
1
2

1
2 0 0 0 0

0 3
4

1
4 0 0 0

0 1
4

3
4 0 0 0

0 0 3
4

1
4 0 0

0 0 1
4

3
4 0 0

0 0 0 3
4

1
4 0

0 0 0 1
4

3
4 0

0 0 0 0 1
2

1
2

0 0 0 0 0 1




; (7.1)

Q k+1 =




0 0 0 0
1
2 0 0 0

− 3
4

1
4 0 0

− 1
4

3
4 0 0

0 − 3
4 − 1

4 0

0 − 1
4 − 3

4 0

0 0 3
4 − 1

4

0 0 1
4 − 3

4

0 0 0 1
2

0 0 0 0




; (7.2)

Ak+1 =




1 0 0 0 0 0 0 0 0 0

− 1
2 1 3

4 − 1
4 0 0 0 0 0 0

0 0 − 1
4

3
4

3
4 − 1

4 0 0 0 0

0 0 0 0 − 1
4

3
4

3
4 − 1

4 0 0

0 0 0 0 0 0 − 1
4

3
4 1 − 1

2

0 0 0 0 0 0 0 0 0 1



; (7.3)

Bk+1 =



− 1
2 1 − 3

4
1
4 0 0 0 0 0 0

0 0 − 1
4

3
4 − 3

4
1
4 0 0 0 0

0 0 0 0 1
4 − 3

4
3
4 − 1

4 0 0

0 0 0 0 0 0 1
4 − 3

4 1 − 1
2


 : (7.4)
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The Gram matrix corresponding to this system is

�k+1 =




3
2 −1 0 0 0 0 0 0 0 0

−1 2 0 0 0 0 0 0 0 0

0 0 5
4 − 3

4 0 0 0 0 0 0

0 0 − 3
4

5
4 0 0 0 0 0 0

0 0 0 0 5
4 − 3

4 0 0 0 0

0 0 0 0 − 3
4

5
4 0 0 0 0

0 0 0 0 0 0 5
4 − 3

4 0 0

0 0 0 0 0 0 − 3
4

5
4 0 0

0 0 0 0 0 0 0 0 2 −1
0 0 0 0 0 0 0 0 −1 3

2




: (7.5)
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