6,188 research outputs found

    Construction and Applications of CRT Sequences

    Full text link
    Protocol sequences are used for channel access in the collision channel without feedback. Each user accesses the channel according to a deterministic zero-one pattern, called the protocol sequence. In order to minimize fluctuation of throughput due to delay offsets, we want to construct protocol sequences whose pairwise Hamming cross-correlation is as close to a constant as possible. In this paper, we present a construction of protocol sequences which is based on the bijective mapping between one-dimensional sequence and two-dimensional array by the Chinese Remainder Theorem (CRT). In the application to the collision channel without feedback, a worst-case lower bound on system throughput is derived.Comment: 16 pages, 5 figures. Some typos in Section V are correcte

    Compositional competitiveness for distributed algorithms

    Full text link
    We define a measure of competitive performance for distributed algorithms based on throughput, the number of tasks that an algorithm can carry out in a fixed amount of work. This new measure complements the latency measure of Ajtai et al., which measures how quickly an algorithm can finish tasks that start at specified times. The novel feature of the throughput measure, which distinguishes it from the latency measure, is that it is compositional: it supports a notion of algorithms that are competitive relative to a class of subroutines, with the property that an algorithm that is k-competitive relative to a class of subroutines, combined with an l-competitive member of that class, gives a combined algorithm that is kl-competitive. In particular, we prove the throughput-competitiveness of a class of algorithms for collect operations, in which each of a group of n processes obtains all values stored in an array of n registers. Collects are a fundamental building block of a wide variety of shared-memory distributed algorithms, and we show that several such algorithms are competitive relative to collects. Inserting a competitive collect in these algorithms gives the first examples of competitive distributed algorithms obtained by composition using a general construction.Comment: 33 pages, 2 figures; full version of STOC 96 paper titled "Modular competitiveness for distributed algorithms.

    ObliviSync: Practical Oblivious File Backup and Synchronization

    Get PDF
    Oblivious RAM (ORAM) protocols are powerful techniques that hide a client's data as well as access patterns from untrusted service providers. We present an oblivious cloud storage system, ObliviSync, that specifically targets one of the most widely-used personal cloud storage paradigms: synchronization and backup services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. This setting provides a unique opportunity because the above privacy properties can be achieved with a simpler form of ORAM called write-only ORAM, which allows for dramatically increased efficiency compared to related work. Our solution is asymptotically optimal and practically efficient, with a small constant overhead of approximately 4x compared with non-private file storage, depending only on the total data size and parameters chosen according to the usage rate, and not on the number or size of individual files. Our construction also offers protection against timing-channel attacks, which has not been previously considered in ORAM protocols. We built and evaluated a full implementation of ObliviSync that supports multiple simultaneous read-only clients and a single concurrent read/write client whose edits automatically and seamlessly propagate to the readers. We show that our system functions under high work loads, with realistic file size distributions, and with small additional latency (as compared to a baseline encrypted file system) when paired with Dropbox as the synchronization service.Comment: 15 pages. Accepted to NDSS 201

    KeyForge: Mitigating Email Breaches with Forward-Forgeable Signatures

    Full text link
    Email breaches are commonplace, and they expose a wealth of personal, business, and political data that may have devastating consequences. The current email system allows any attacker who gains access to your email to prove the authenticity of the stolen messages to third parties -- a property arising from a necessary anti-spam / anti-spoofing protocol called DKIM. This exacerbates the problem of email breaches by greatly increasing the potential for attackers to damage the users' reputation, blackmail them, or sell the stolen information to third parties. In this paper, we introduce "non-attributable email", which guarantees that a wide class of adversaries are unable to convince any third party of the authenticity of stolen emails. We formally define non-attributability, and present two practical system proposals -- KeyForge and TimeForge -- that provably achieve non-attributability while maintaining the important protection against spam and spoofing that is currently provided by DKIM. Moreover, we implement KeyForge and demonstrate that that scheme is practical, achieving competitive verification and signing speed while also requiring 42% less bandwidth per email than RSA2048

    A Dual Digraph Approach for Leaderless Atomic Broadcast (Extended Version)

    Full text link
    Many distributed systems work on a common shared state; in such systems, distributed agreement is necessary for consistency. With an increasing number of servers, these systems become more susceptible to single-server failures, increasing the relevance of fault-tolerance. Atomic broadcast enables fault-tolerant distributed agreement, yet it is costly to solve. Most practical algorithms entail linear work per broadcast message. AllConcur -- a leaderless approach -- reduces the work, by connecting the servers via a sparse resilient overlay network; yet, this resiliency entails redundancy, limiting the reduction of work. In this paper, we propose AllConcur+, an atomic broadcast algorithm that lifts this limitation: During intervals with no failures, it achieves minimal work by using a redundancy-free overlay network. When failures do occur, it automatically recovers by switching to a resilient overlay network. In our performance evaluation of non-failure scenarios, AllConcur+ achieves comparable throughput to AllGather -- a non-fault-tolerant distributed agreement algorithm -- and outperforms AllConcur, LCR and Libpaxos both in terms of throughput and latency. Furthermore, our evaluation of failure scenarios shows that AllConcur+'s expected performance is robust with regard to occasional failures. Thus, for realistic use cases, leveraging redundancy-free distributed agreement during intervals with no failures improves performance significantly.Comment: Overview: 24 pages, 6 sections, 3 appendices, 8 figures, 3 tables. Modifications from previous version: extended the evaluation of AllConcur+ with a simulation of a multiple datacenters deploymen

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them
    • …
    corecore