18 research outputs found

    Construction of Partial MDS and Sector-Disk Codes With Two Global Parity Symbols

    Get PDF
    Partial MDS (PMDS) codes are erasure codes combining local (row) correction with global additional correction of entries, while sector-disk (SD) codes are erasure codes that address the mixed failure mode of current redundant arrays of independent disk (RAID) systems. It has been an open problem to construct general codes that have the PMDS and the SD properties, and previous work has relied on Monte-Carlo searches. In this paper, we present a general construction that addresses the case of any number of failed disks and in addition, two erased sectors. The construction requires a modest field size. This result generalizes previous constructions extending RAID 5 and RAID 6

    Construction of Partial MDS and Sector-Disk Codes With Two Global Parity Symbols

    Get PDF
    Partial MDS (PMDS) codes are erasure codes combining local (row) correction with global additional correction of entries, while sector-disk (SD) codes are erasure codes that address the mixed failure mode of current redundant arrays of independent disk (RAID) systems. It has been an open problem to construct general codes that have the PMDS and the SD properties, and previous work has relied on Monte-Carlo searches. In this paper, we present a general construction that addresses the case of any number of failed disks and in addition, two erased sectors. The construction requires a modest field size. This result generalizes previous constructions extending RAID 5 and RAID 6

    Constructions of Maximally Recoverable Local Reconstruction Codes via Function Fields

    Get PDF
    Local Reconstruction Codes (LRCs) allow for recovery from a small number of erasures in a local manner based on just a few other codeword symbols. They have emerged as the codes of choice for large scale distributed storage systems due to the very efficient repair of failed storage nodes in the typical scenario of a single or few nodes failing, while also offering fault tolerance against worst-case scenarios with more erasures. A maximally recoverable (MR) LRC offers the best possible blend of such local and global fault tolerance, guaranteeing recovery from all erasure patterns which are information-theoretically correctable given the presence of local recovery groups. In an (n,r,h,a)-LRC, the n codeword symbols are partitioned into r disjoint groups each of which include a local parity checks capable of locally correcting a erasures. The codeword symbols further obey h heavy (global) parity checks. Such a code is maximally recoverable if it can correct all patterns of a erasures per local group plus up to h additional erasures anywhere in the codeword. This property amounts to linear independence of all such subsets of columns of the parity check matrix. MR LRCs have received much attention recently, with many explicit constructions covering different regimes of parameters. Unfortunately, all known constructions require a large field size that is exponential in h or a, and it is of interest to obtain MR LRCs of minimal possible field size. In this work, we develop an approach based on function fields to construct MR LRCs. Our method recovers, and in most parameter regimes improves, the field size of previous approaches. For instance, for the case of small r =slant Omega(n^{1-epsilon}), we improve the field size from roughly n^h to n^{epsilon h}. For the case of a=1 (one local parity check), we improve the field size quadratically from r^{h(h+1)} to r^{h floor[(h+1)/2]} for some range of r. The improvements are modest, but more importantly are obtained in a unified manner via a promising new idea
    corecore