1,484 research outputs found

    Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables

    Full text link
    In this paper, a technique on constructing nonlinear resilient Boolean functions is described. By using several sets of disjoint spectra functions on a small number of variables, an almost optimal resilient function on a large even number of variables can be constructed. It is shown that given any mm, one can construct infinitely many nn-variable (nn even), mm-resilient functions with nonlinearity >2n−1−2n/2>2^{n-1}-2^{n/2}. A large class of highly nonlinear resilient functions which were not known are obtained. Then one method to optimize the degree of the constructed functions is proposed. Last, an improved version of the main construction is given.Comment: 14 pages, 2 table

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [−1,1][-1,1]-valued dd-resilient function in ℓ1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between ℓ1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that ℓ1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    Maiorana-McFarland class: Degree optimization and algebraic properties

    Get PDF

    On the Algebraic Immunity - Resiliency trade-off, implications for Goldreich\u27s Pseudorandom Generator

    Get PDF
    Goldreich\u27s pseudorandom generator is a well-known building block for many theoretical cryptographic constructions from multi-party computation to indistinguishability obfuscation. Its unique efficiency comes from the use of random local functions: each bit of the output is computed by applying some fixed public nn-variable Boolean function ff to a random public size-nn tuple of distinct input bits. The characteristics that a Boolean function ff must have to ensure pseudorandomness is a puzzling issue. It has been studied in several works and particularly by Applebaum and Lovett (STOC 2016) who showed that resiliency and algebraic immunity are key parameters in this purpose. In this paper, we propose the first study on Boolean functions that reach together maximal algebraic immunity and high resiliency. 1) We assess the possible consequences of the asymptotic existence of such optimal functions. We show how they allow to build functions reaching all possible algebraic immunity-resiliency trade-offs (respecting the algebraic immunity and Siegenthaler bounds). We provide a new bound on the minimal number of variables~nn, and thus on the minimal locality, necessary to ensure a secure Goldreich\u27s pseudorandom generator. Our results come with a granularity level depending on the strength of our assumptions, from none to the conjectured asymptotic existence of optimal functions. 2) We extensively analyze the possible existence and the properties of such optimal functions. Our results show two different trends. On the one hand, we were able to show some impossibility results concerning existing families of Boolean functions that are known to be optimal with respect to their algebraic immunity, starting by the promising XOR-MAJ functions. We show that they do not reach optimality and could be beaten by optimal functions if our conjecture is verified. On the other hand, we prove the existence of optimal functions in low number of variables by experimentally exhibiting some of them up to 1212 variables. This directly provides better candidates for Goldreich\u27s pseudorandom generator than the existing XOR-MAJ candidates for polynomial stretches from 22 to 66

    On Negabent Functions and Nega-Hadamard Transform

    Get PDF
    The Boolean function which has equal absolute spectral values under the nega-Hadamard transform is called negabent function. In this paper, the special Boolean functions by concatenation are presented. We investigate their nega-Hadamard transforms, nega-autocorrelation coefficients, sum-of-squares indicators, and so on. We establish a new equivalent statement on f1∄f2 which is negabent function. Based on them, the construction for generating the negabent functions by concatenation is given. Finally, the function expressed as f(Ax⊕a)⊕b·x⊕c is discussed. The nega-Hadamard transform and nega-autocorrelation coefficient of this function are derived. By applying these results, some properties are obtained

    1-Resilient Boolean Functions on Even Variables with Almost Perfect Algebraic Immunity

    Get PDF
    Several factors (e.g., balancedness, good correlation immunity) are considered as important properties of Boolean functions for using in cryptographic primitives. A Boolean function is perfect algebraic immune if it is with perfect immunity against algebraic and fast algebraic attacks. There is an increasing interest in construction of Boolean function that is perfect algebraic immune combined with other characteristics, like resiliency. A resilient function is a balanced correlation-immune function. This paper uses bivariate representation of Boolean function and theory of finite field to construct a generalized and new class of Boolean functions on even variables by extending the Carlet-Feng functions. We show that the functions generated by this construction support cryptographic properties of 1-resiliency and (sub)optimal algebraic immunity and further propose the sufficient condition of achieving optimal algebraic immunity. Compared experimentally with Carlet-Feng functions and the functions constructed by the method of first-order concatenation existing in the literature on even (from 6 to 16) variables, these functions have better immunity against fast algebraic attacks. Implementation results also show that they are almost perfect algebraic immune functions
    • 

    corecore