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The Boolean function which has equal absolute spectral values under the nega-Hadamard transform is called negabent function.
In this paper, the special Boolean functions by concatenation are presented.We investigate their nega-Hadamard transforms, nega-
autocorrelation coefficients, sum-of-squares indicators, and so on. We establish a new equivalent statement on 𝑓

1
‖ 𝑓
2
which is

negabent function. Based on them, the construction for generating the negabent functions by concatenation is given. Finally, the
function expressed as 𝑓(𝐴𝑥⊕𝑎) ⊕ 𝑏 ⋅ 𝑥 ⊕ 𝑐 is discussed.The nega-Hadamard transform and nega-autocorrelation coefficient of this
function are derived. By applying these results, some properties are obtained.

1. Introduction

Rothaus [1] introduced the class of bent functions which
play an important role in cryptography and error correcting
coding (where they are used to define optimum codes such
as the Kerdock codes). The bent functions are those Boolean
functions whose Hamming distance to the set of all affine
functions is maximum. Equivalently, their spectrum with
respect to the Walsh-Hadamard transform is flat (i.e., all
spectral values have the same absolute value). The Walsh-
Hadamard transform is an example of a unitary transfor-
mation on the space of all Boolean functions. Riera and
Parker [2] considered some generalized bent criteria for
Boolean functions by analyzing Boolean functions that have
a flat spectrum with respect to one or more transforms
chosen from a set of unitary transforms. The transforms
chosen by Riera and Parker are 𝑛-fold tensor products
of the identity mapping ( 1 0

0 1
), Walsh-Hadamard transfor-

mation (1/√2) ( 1 1
1 −1

), and nega-Hadamard transformation
(1/√2) ( 1 𝑖

1 −𝑖
), where 𝑖2 = −1. Riera and Parker [2]mentioned

that this choice is motivated by local unitary transforms
that play an important role in the structural analysis of
pure 𝑛-qubit stabilizer quantum states. As in the case of
the Walsh-Hadamard transform, a Boolean function whose
nega-Hadamard magnitude spectrum is flat is said to be

negabent. Moreover, a Boolean function is called bent-
negabent if it is both bent and negabent. For instance, the 6-
variable function 𝑓(𝑥) = (𝑥

1
⊕ 𝑥
2
⊕ 𝑥
1
𝑥
2
⊕ 𝑥
2
𝑥
3
)𝑥
4
⊕ (𝑥
3
⊕

𝑥
1
𝑥
2
⊕𝑥
2
𝑥
3
)𝑥
5
⊕(𝑥
1
⊕𝑥
3
)𝑥
6
is a cubic negabent function and

the 4-variable function 𝑔(𝑦) = 𝑦
1
𝑦
2
⊕ 𝑦
2
𝑦
3
⊕ 𝑦
3
𝑦
4
is bent-

negabent.
Negabent functions and bent-negabent functions have

been extensively studied during the last few years [3–11].
Parker and Pott [3] presented several constructions and
classifications on bent-negabent. Schmidt et al. [4] con-
structed a subclass of the Maiorana-McFarland class of bent
functions in which all functions are also negabent. Also, they
provided an upper bound on the algebraic degree of any bent-
negabent Boolean function from the Maiorana-McFarland
class. Sarkar [5] studied the symmetric negabent functions
and obtained that a symmetric function is negabent if and
only if it is affine. Stănică et al. [6, 9] gave the detailed
study of some of properties of nega-Hadamard transform and
derived several results on negabentness of concatenations.
They pointed out that the algebraic degree of an 𝑛-variable
negabent function is atmost ⌈𝑛/2⌉. In [7], Gangopadhyay and
Chaturvedi developed the technique of constructing bent-
negabent functions by using complete mapping polynomials.
Sarkar [8] considered negabent functions that have trace rep-
resentation and completely characterized negabent quadratic
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monomial functions. The necessary and sufficient condition
for a Maiorana-McFarland bent function to be a negabent
function was presented in [8]. Su et al. [10] gave necessary
and sufficient conditions for Boolean functions to be a
negabent function for both an even and an odd number of
variables and also determined the nega-Hadamard transform
distribution of negabent functions. Further, a method to
construct bent-negabent functions was provided. In [11],
Zhang et al. presented two methods for constructing bent-
negabent functions by using the indirect sum construction
(proposed by Carlet in 2004 [12]).

2. Definitions and Notations

In this section we introduce a few basic concepts and
notations. Let F

2
denote the finite field with two elements.

We denote by B
𝑛
the set of all Boolean functions of 𝑛-

variable, that is, of all the functions from F𝑛
2
into F

2
. The set

of integers, real numbers, and complex numbers are denoted
by Z, R, and C, respectively. The addition over Z, R, and C
is denoted by +, ∑

𝑖
. The addition over F𝑛

2
for all 𝑛 ≥ 1 is

denoted by ⊕,⨁
𝑖
. The Hamming weight𝑤𝑡(𝑥) of an element

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ F𝑛
2
is the number of ones in 𝑥; that is,

𝑤𝑡(𝑥) = ∑
𝑛

𝑖=1
𝑥
𝑖
. We say that a Boolean function is balanced if

its truth table contains an equal number of 0’s and 1’s; that is,
if its Hamming weight equals 𝑤𝑡(𝑓) = 2𝑛−1. The Hamming
distance between two functions 𝑓(𝑥) and 𝑔(𝑥), denoted by
𝑑(𝑓, 𝑔), is the Hamming weight of 𝑓 ⊕ 𝑔; that is, 𝑑(𝑓, 𝑔) =
𝑤𝑡(𝑓 ⊕ 𝑔).

Any Boolean function 𝑓(𝑥) ∈ B
𝑛
, where 𝑥 = (𝑥

1
, 𝑥
2
, . . . ,

𝑥
𝑛
) ∈ F𝑛
2
, is generally represented by its algebraic normal form

(ANF):

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = ⨁
𝑢∈F𝑛
2

𝜆
𝑢
(
𝑛

∏
𝑖=1

𝑥
𝑢
𝑖

𝑖
) , (1)

where 𝜆
𝑢
∈ F
2
and 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ F𝑛

2
. The algebraic

degree of 𝑓(𝑥), denoted by deg(𝑓), is the maximal value of
𝑤𝑡(𝑢) such that 𝜆

𝑢
̸= 0. A Boolean function is affine if there

exists no term of degree strictly greater than 1 in the ANF
and the set of all affine functions is denoted by 𝐴

𝑛
. An affine

function with constant term equal to zero is called a linear
function. Any liner function on F𝑛

2
is denoted by 𝑥 ⋅ 𝜔 =

𝑥
1
𝜔
1
⊕𝑥
2
𝜔
2
⊕ ⋅ ⋅ ⋅⊕𝑥

𝑛
𝜔
𝑛
, where 𝑥, 𝜔 ∈ F𝑛

2
.The nonlinearity of

an 𝑛-variable function 𝑓(𝑥) is 𝑛𝑙(𝑓) = min
𝑔∈𝐴
𝑛

(𝑑(𝑓, 𝑔)), that
is, the distance from the set of all 𝑛-variable affine functions.
If 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ F𝑛

2
and 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ F𝑛

2
,

we define the scalar (or inner) product, respectively, as the
intersection by

𝑥 ⋅ 𝑦 = 𝑥
1
𝑦
1
⊕ 𝑥
2
𝑦
2
⊕ ⋅ ⋅ ⋅ ⊕ 𝑥

𝑛
𝑦
𝑛
,

𝑥 ∗ 𝑦 = (𝑥
1
𝑦
1
, 𝑥
2
𝑦
2
, . . . , 𝑥

𝑛
𝑦
𝑛
) .

(2)

In this paper, we will use the well-known identity

𝑤𝑡 (𝑥 ⊕ 𝑦) = 𝑤𝑡 (𝑥) + 𝑤𝑡 (𝑦) − 2𝑤𝑡 (𝑥 ∗ 𝑦) . (3)

The cardinality of the set𝐴 is denoted by |𝐴|. If 𝑧 = 𝑎+𝑏𝑖 ∈

C, then |𝑧| = √𝑎2 + 𝑏2 denotes the absolute value of 𝑧 and

𝑧 = 𝑎− 𝑏𝑖 denotes the complex conjugate of 𝑧, where 𝑖2 = −1,
𝑎, 𝑏 ∈ R.

The Walsh-Hadamard transform of 𝑓 ∈ B
𝑛
at any point

𝜔 ∈ F𝑛
2
is denoted by

H
𝑓
(𝜔) = 2−𝑛/2∑

𝑥∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝜔⋅𝑥 . (4)

Thenega-Hadamard transformof𝑓 ∈ B
𝑛
at any point𝜔 ∈ F𝑛

2

is the complex valued function:

NH
𝑓
(𝜔) = 2−𝑛/2∑

𝑥∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝜔⋅𝑥 𝑖𝑤𝑡(𝑥). (5)

A function 𝑓 ∈ B
𝑛
is a bent function if |H

𝑓
(𝜔)| = 1

for all 𝜔 ∈ F𝑛
2
. Similarly, 𝑓 is called negabent function if

|NH
𝑓
(𝜔)| = 1 for all 𝜔 ∈ F𝑛

2
. It is interesting to note that

all the affine functions (both odd and even) are negabent. If
𝑓 is both bent and negabent, we say that 𝑓 is bent-negabent.
They will be interesting as they have extreme properties in
terms of two different Fourier transforms.

The nega-cross-correlation coefficient of 𝑓 and 𝑔 at 𝜔 is
denoted by

NC
𝑓,𝑔

(𝜔) = ∑
𝑥∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝑔(𝑥⊕𝜔)

(−1)
𝜔⋅𝑥 . (6)

We define the nega-autocorrelation coefficient of 𝑓 at 𝜔 by

NC
𝑓
(𝜔) = ∑

𝑥∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝑓(𝑥⊕𝜔)

(−1)
𝜔⋅𝑥 . (7)

Note thatNC
𝑓,𝑔
(𝜔) = (−1)𝑤𝑡(𝜔)NC

𝑔,𝑓
(𝜔).The functions

𝑓 and 𝑔 are said to have complementary nega-autocorrelation
if for all nonzero 𝑢 ∈ F𝑛

2

NC
𝑓
(𝑢) +NC

𝑔
(𝑢) = 0. (8)

Definition 1. Let 𝑓(𝑥), 𝑔(𝑥) ∈ B
𝑛
, and the sum-of-squares

indicator of the nega-cross-correlation between 𝑓(𝑥) and
𝑔(𝑥) is defined by

Δ
𝑓,𝑔

= ∑
𝜔∈F𝑛
2

NC
2

𝑓,𝑔
(𝜔) . (9)

If 𝑓 = 𝑔, then Δ
𝑓,𝑓

is called the sum-of-squares indicator of
the nega-autocorrelation of 𝑓 and denoted by Δ

𝑓
; that is,

Δ
𝑓
= ∑
𝜔∈F𝑛
2

NC
2

𝑓
(𝜔) . (10)

Note that NC
𝑓
(0) = 2𝑛. Thus, Δ

𝑓
= ∑
𝜔∈F𝑛
2

NC2
𝑓
(𝜔) ≥

NC2
𝑓
(0) = 22𝑛. A Boolean function 𝑓(𝑥) ∈ B

𝑛
is negabent if

and only ifNC
𝑓
(𝜔) = 0 for all𝜔 ∈ F𝑛

2
−{0}. Hence,Δ

𝑓
≥ 22𝑛,

where the equality holds if and only if𝑓 is negabent function.

3. Some Cryptographic Properties of
Boolean Functions by Concatenation

In this section, we will use concatenation of Boolean func-
tions. Let 𝑓

1
, 𝑓
2
∈ B
𝑛−1

and 𝑓(𝑥) ∈ B
𝑛
. We denote the
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concatenation of 𝑓
1
, 𝑓
2
by 𝑓
1
‖ 𝑓
2
. So, 𝑓 = 𝑓

1
‖ 𝑓
2
means

that in algebraic normal form

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (1 ⊕ 𝑥

𝑛
) 𝑓
1
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
)

⊕ 𝑥
𝑛
𝑓
2
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) .

(11)

The concatenation simply means that the truth tables of the
functions are merged. For 𝑓 = 𝑓

1
‖ 𝑓
2
, the upper half part

of the truth table of 𝑓 corresponds to 𝑓
1
and the lower half

part to𝑓
2
.The concatenation of affine functions together with

certain nonlinear function has been used in several works
[13–15].

In [6, 9], the function ℎ(x, 𝑦) = 𝑓 ‖ 𝑔 = 𝑓(x)(1 ⊕ 𝑦) ⊕
𝑔(x)𝑦 was studied and the following result was obtained.

Theorem 2 (see [6, 9]). Suppose ℎ ∈ B
𝑛+1

is expressed as

ℎ (x, 𝑦) = 𝑓 (x) (1 ⊕ 𝑦) ⊕ 𝑔 (x) 𝑦 (12)

for all (x, 𝑦) ∈ F𝑛
2
× F
2
, where 𝑓, 𝑔 ∈ B

𝑛
. Then the following

statements are equivalent.

(i) ℎ is negabent.

(ii) 𝑓 and 𝑔 have complementary nega-autocorrelations
and NC

𝑓,𝑔
(𝑢) = 0 for all 𝑢 ∈ F𝑛

2
with 𝑤𝑡(𝑢) ≡

1(mod 2).

(iii) |NH
𝑓
(𝑢)|2 + |NH

𝑔
(𝑢)|2 = 2 for all 𝑢 ∈ F𝑛

2
and

NH
𝑓
(𝑢)/NH

𝑔
(𝑢) is a real number whenever

|NH
𝑓
(𝑢)||NH

𝑔
(𝑢)| ̸= 0.

In the following, we establish here a new equivalent
statement. Also, we give an alternate proof of Theorem 13
[6, 9].

Theorem 3. Let ℎ ∈ B
𝑛+1

be expressed as

ℎ (x, 𝑦) = 𝑓 (x) (1 ⊕ 𝑦) ⊕ 𝑔 (x) 𝑦 (13)

for all (x, 𝑦) ∈ F𝑛
2
× F
2
, where 𝑓, 𝑔 ∈ B

𝑛
. Then the following

statements are equivalent.

(1) ℎ is negabent.

(2) |NH
𝑓
(𝑢)|2 + |NH

𝑔
(𝑢)|2 = 2 for all 𝑢 ∈ F𝑛

2
and

NH
𝑓
(𝑢)/NH

𝑔
(𝑢) is a real number whenever

|NH
𝑓
(𝑢)||NH

𝑔
(𝑢)| ̸= 0.

(3) 𝑓 and 𝑔 are negabent functions and

(NH
𝑓
(𝑢) ,NH

𝑔
(𝑢))

∈
{{
{{
{

{(±1, ±1) , (±𝑖, ±𝑖)} , 𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛,

{(±
1 + 𝑖

√2
, ±

1 + 𝑖

√2
) , (±

1 − 𝑖

√2
, ±

1 − 𝑖

√2
)} , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

(14)

where 𝑢 ∈ F𝑛
2
.

Proof. We first show (1)⇒(2). By using the definition of the
nega-Hadamard transform, we compute that

NH
ℎ
(u, 𝑎)

=

{{{
{{{
{

1

√2
NH
𝑓
(u) + 𝑖

√2
NH
𝑔
(u) , if 𝑎 = 0,

1

√2
NH
𝑓
(u) − 𝑖

√2
NH
𝑔
(u) , if 𝑎 = 1.

(15)

As ℎ is negabent,NH
ℎ
(u, 𝑎) = 1, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

√2
NH
𝑓
(u) + 𝑖

√2
NH
𝑔
(u)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

√2
NH
𝑓
(u) − 𝑖

√2
NH
𝑔
(u)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1.

(16)

According to (5), set

NH
𝑓
(𝑢) = 2−𝑛/2 (𝑎 + 𝑏𝑖) ,

NH
𝑔
(𝑢) = 2−𝑛/2 (𝑐 + 𝑑𝑖) ,

𝑎, 𝑏, 𝑐, 𝑑 ∈ Z.

(17)

Hence,
󵄨󵄨󵄨󵄨󵄨NH
𝑓
(𝑢)

󵄨󵄨󵄨󵄨󵄨 =
√2−𝑛 (𝑎2 + 𝑏2),

󵄨󵄨󵄨󵄨󵄨NH
𝑔
(𝑢)

󵄨󵄨󵄨󵄨󵄨 =
√2−𝑛 (𝑐2 + 𝑑2),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−𝑛/2

√2
(𝑎 − 𝑑) +

2−𝑛/2

√2
(𝑏 + 𝑐) 𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2−𝑛/2

√2
(𝑎 + 𝑑) +

2−𝑛/2

√2
(𝑏 − 𝑐) 𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1;

(18)

that is,

(𝑎 − 𝑑)
2 + (𝑏 + 𝑐)

2 = 2𝑛+1,

(𝑎 + 𝑑)
2 + (𝑏 − 𝑐)

2 = 2𝑛+1.
(19)

From (19), we have

2−𝑛 (𝑎2 + 𝑏2) + 2−𝑛 (𝑐2 + 𝑑2) = 2, 𝑎𝑑 = 𝑏𝑐. (20)

Thus, |NH
𝑓
(𝑢)|2 + |NH

𝑔
(𝑢)|2 = 2. Since 𝑎𝑑 = 𝑏𝑐, suppose,

for all 𝑢 ∈ F𝑛
2
, |NH

𝑓
(𝑢)||NH

𝑔
(𝑢)| ̸= 0; then

NH
𝑓
(𝑢)

NH
𝑔
(𝑢)

=
𝑎 + 𝑏𝑖

𝑐 + 𝑑𝑖
=
(𝑎 + 𝑏𝑖) (𝑐 − 𝑑𝑖)

(𝑐 + 𝑑𝑖) (𝑐 − 𝑑𝑖)

=
(𝑎𝑐 + 𝑏𝑑) + (𝑏𝑐 − 𝑎𝑑) 𝑖

𝑐2 + 𝑑2
=
𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2
∈ R.

(21)

We now show (2)⇒(3). By (2), since |NH
𝑓
(𝑢)|2 +

|NH
𝑔
(𝑢)|2 = 2 for all 𝑢 ∈ F𝑛

2
, then

2−𝑛 (𝑎2 + 𝑏2 + 𝑐2 + 𝑑2) = 2; (22)
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that is,

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 2𝑛+1. (23)

Note that 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z. There are two cases to be consid-
ered: 𝑛 even and 𝑛 odd.

Case 1 (𝑛 is even). By applying Jacobi’s four-square theo-
rem, (14) has exactly 24 solutions, which are all variations
in ± sign and order of (±2𝑛/2, ±2𝑛/2, 0, 0). Further, it is
straightforward to check that, among these 24 solutions,
the eight tuples (𝑎, 𝑏, 𝑐, 𝑑), in the list below, are also satis-
fying NH

𝑓
(𝑢)/NH

𝑔
(𝑢) which is a real number whenever

|NH
𝑓
(𝑢)||NH

𝑔
(𝑢)| ̸= 0,

(𝑎, 𝑏, 𝑐, 𝑑)

∈ {(±2𝑛/2, 0, ±2𝑛/2, 0) , (0, ±2𝑛/2, 0, ±2𝑛/2)} .
(24)

Therefore,

(NH
𝑓
(𝑢) ,NH

𝑔
(𝑢)) ∈ {(±1, ±1) , (±𝑖, ±𝑖)} . (25)

So, |NH
𝑓
(𝑢)| = |NH

𝑔
(𝑢)| = 1, where 𝑢 ∈ F𝑛

2
.

Case 2 (𝑛 is odd). Similarly, from Jacobi’s four-square
theorem, (14) has exactly 24 solutions, which are all
variations in ± sign and order of (±2(𝑛+1)/2, 0, 0, 0) or
(±2(𝑛−1)/2, ±2(𝑛−1)/2, ±2(𝑛−1)/2, ±2(𝑛−1)/2). Further, it is straight-
forward to check that, among these 24 solutions, the
eight tuples (𝑎, 𝑏, 𝑐, 𝑑), in the list below, are also satisfy-
ing NH

𝑓
(𝑢)/NH

𝑔
(𝑢) which is a real number whenever

|NH
𝑓
(𝑢)||NH

𝑔
(𝑢)| ̸= 0,

(2(𝑛−1)/2, 2(𝑛−1)/2, 2(𝑛−1)/2, 2(𝑛−1)/2) , (2(𝑛−1)/2, 2(𝑛−1)/2, −2(𝑛−1)/2, −2(𝑛−1)/2) ,

(2(𝑛−1)/2, −2(𝑛−1)/2, −2(𝑛−1)/2, 2(𝑛−1)/2) , (2(𝑛−1)/2, −2(𝑛−1)/2, 2(𝑛−1)/2, −2(𝑛−1)/2) ,

(−2(𝑛−1)/2, 2(𝑛−1)/2, 2(𝑛−1)/2, −2(𝑛−1)/2) , (−2(𝑛−1)/2, −2(𝑛−1)/2, 2(𝑛−1)/2, 2(𝑛−1)/2) ,

(−2(𝑛−1)/2, 2(𝑛−1)/2, −2(𝑛−1)/2, 2(𝑛−1)/2) , (−2(𝑛−1)/2, −2(𝑛−1)/2, −2(𝑛−1)/2, −2(𝑛−1)/2) .

(26)

Then,

(NH
𝑓
(𝑢) ,NH

𝑔
(𝑢))

∈ {(±
1 + 𝑖

√2
, ±

1 + 𝑖

√2
) , (±

1 − 𝑖

√2
, ±

1 − 𝑖

√2
)} .

(27)

So, |NH
𝑓
(𝑢)| = |NH

𝑔
(𝑢)| = 1, where 𝑢 ∈ F𝑛

2
.

Summarizing Cases 1 and 2, we conclude that𝑓 and 𝑔 are
negabent functions if (2) holds.

In the end, we show (3)⇒(1). According to (15), thanks to
(14), (1) holds. This completes the proof.

In the following, for 𝑓 = 𝑓
1
‖ 𝑓
2
, we discuss a connection

among Δ
𝑓
, Δ
𝑓
1

, Δ
𝑓
2

, and Δ
𝑓
1
,𝑓
2

. At first, according to the
proof of Theorem 3 and Corollary 2 in [6, 9], we have the
following.

Lemma 4 (see [6, 9]). Let 𝑓(𝑥, 𝑥
𝑛
) = 𝑓
1
‖ 𝑓
2
∈ B
𝑛
, 𝑥 ∈ F𝑛−1

2
,

𝑥
𝑛
∈ F
2
, 𝑓
1
, 𝑓
2
∈ B
𝑛−1

; then

NC
𝑓
(𝜔, 𝜔
𝑛
)

=
{
{
{

NC
𝑓
1

(𝜔) +NC
𝑓
2

(𝜔) , 𝑖𝑓 𝜔
𝑛
= 0,

NC
𝑓
1
,𝑓
2

(𝜔) − (−1)𝑤𝑡(𝜔)NC
𝑓
1
,𝑓
2

(𝜔) , 𝑖𝑓 𝜔
𝑛
= 1,

(28)

where 𝜔 ∈ F𝑛−1
2

, 𝜔
𝑛
∈ F
2
.

To obtain a connection among Δ
𝑓
, Δ
𝑓
1

, Δ
𝑓
2

, and Δ
𝑓
1
,𝑓
2

,
the following lemma is needed.

Lemma 5. Let 𝑓, 𝑔 ∈ B
𝑛
. Then

Δ
𝑓,𝑔

= ∑
𝛼∈F𝑛
2

NC
2

𝑓,𝑔
(𝛼) = ∑

𝜔∈F𝑛
2

NC
𝑓
(𝜔)NC

𝑔
(𝜔) . (29)

Proof. According to the definition of nega-autocorrelation
coefficient, we have

∑
𝜔∈F𝑛
2

NC
𝑓
(𝜔)NC

𝑔
(𝜔)

= ∑
𝜔∈F𝑛
2

(∑
𝑥∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝑓(𝑥⊕𝜔)⊕𝜔⋅𝑥

⋅ ∑
𝑦∈F𝑛
2

(−1)
𝑔(𝑦)⊕𝑔(𝑦⊕𝜔)⊕𝜔⋅𝑦) = ∑

𝑥,𝑦∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝑔(𝑦)

⋅ ∑
𝜔∈F𝑛
2

(−1)
𝑓(𝑥⊕𝜔)⊕𝑔(𝑦⊕𝜔)⊕𝜔⋅(𝑥⊕𝑦)

= ∑
𝑥,𝑦∈F𝑛

2

(−1)
𝑓(𝑥)⊕𝑔(𝑦)⊕(𝑥⊕𝑦)⋅𝑥

⋅ ∑
𝜔∈F𝑛
2

(−1)
𝑓(𝑥⊕𝜔)⊕𝑔(𝑥⊕𝜔⊕𝑥⊕𝑦)⊕(𝑥⊕𝜔)⋅(𝑥⊕𝑦)
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= ∑
𝑥∈F𝑛
2

∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝑔(𝑦)⊕(𝑥⊕𝑦)⋅𝑥

NC
𝑓,𝑔

(𝑥 ⊕ 𝑦)

= ∑
𝛼∈F𝑛
2

∑
𝑥∈F𝑛
2

(−1)
𝑓(𝑥)⊕𝑔(𝑥⊕𝛼)⊕𝛼⋅𝑥

NC
𝑓,𝑔

(𝛼)

= ∑
𝛼∈F𝑛
2

NC
2

𝑓,𝑔
(𝛼) = Δ

𝑓,𝑔
.

(30)

Remark 6. If we use Cauchy’s inequality

(∑
𝑖

𝑎
𝑖
𝑏
𝑖
)

2

≤ ∑
𝑖

𝑎2
𝑖
∑
𝑖

𝑏2
𝑖

(31)

to the sum on the right-hand side of (29), we get

Δ
𝑓,𝑔

= ∑
𝛼∈F𝑛
2

NC
2

𝑓,𝑔
(𝛼) = ∑

𝜔∈F𝑛
2

NC
𝑓
(𝜔)NC

𝑔
(𝜔)

≤ ( ∑
𝜔∈F𝑛
2

NC
2

𝑓
(𝜔))

1/2

( ∑
𝜔∈F𝑛
2

NC
2

𝑔
(𝜔))

1/2

= Δ1/2
𝑓
Δ1/2
𝑔

= √Δ𝑓Δ 𝑔;

(32)

that is, Δ
𝑓,𝑔

≤ √Δ𝑓Δ 𝑔. From Lemmas 4 and 5, we get the
following.

Theorem 7. Let 𝑓(𝑥, 𝑥
𝑛
) = 𝑓
1
‖ 𝑓
2
∈ B
𝑛
, 𝑥 ∈ F𝑛−1

2
, 𝑥
𝑛
∈ F
2
,

𝑓
1
, 𝑓
2
∈ B
𝑛−1

. Then

Δ
𝑓
= Δ
𝑓
1

+ Δ
𝑓
2

+ 4Δ
𝑓
1
,𝑓
2

− 2 ∑
𝜔∈F𝑛−1
2

(−1)
𝑤𝑡(𝜔)

NC
2

𝑓
1
,𝑓
2

(𝜔) .
(33)

Proof. Applying (28) and (29), we have

Δ
𝑓
= ∑
𝜔∈F𝑛−1
2
,𝜔
𝑛
∈F
2

NC
𝑓
(𝜔, 𝜔
𝑛
)
2

= ∑
𝜔∈F𝑛−1
2
,𝜔
𝑛
=0

(NC
𝑓
1

(𝜔) +NC
𝑓
2

(𝜔))
2

+ ∑
𝜔∈F𝑛−1
2
,𝜔
𝑛
=1

(NC
𝑓
1
,𝑓
2

(𝜔)

− (−1)
𝑤𝑡(𝜔)

NC
𝑓
1
,𝑓
2

(𝜔))
2

= ∑
𝜔∈F𝑛−1
2

NC
2

𝑓
1

(𝜔)

+ ∑
𝜔∈F𝑛−1
2

NC
2

𝑓
2

(𝜔) + 2 ∑
𝜔∈F𝑛−1
2

NC
𝑓
1

(𝜔)NC
𝑓
2

(𝜔)

+ 2 ∑
𝜔∈F𝑛−1
2

NC
2

𝑓
1
,𝑓
2

(𝜔) − 2 ∑
𝜔∈F𝑛−1
2

(−1)
𝑤𝑡(𝜔)

⋅NC
2

𝑓
1
,𝑓
2

(𝜔) = Δ
𝑓
1

+ Δ
𝑓
2

+ 4Δ
𝑓
1
,𝑓
2

− 2 ∑
𝜔∈F𝑛−1
2

(−1)
𝑤𝑡(𝜔)

NC
2

𝑓
1
,𝑓
2

(𝜔) .

(34)

Theorem7gives the relationship amongΔ
𝑓
,Δ
𝑓
1

,Δ
𝑓
2

, and
Δ
𝑓
1
,𝑓
2

. Furthermore, we have Δ
𝑓

≥ Δ
𝑓
1

+ Δ
𝑓
2

, where the
equality holds if and only ifNC

𝑓
1
,𝑓
2

(𝜔) = 0 for all 𝜔 ∈ F𝑛−1
2

.
By Lemma 4, we give a construction for generating negabent
functions.

Corollary 8. Let𝑓 ∈ B
𝑛−1

.Then𝑔 ∈ B
𝑛
= 𝑓 ‖ 𝑓 is negabent

if and only if 𝑓 is also negabent functions, where the notation
𝑓 denotes the complement function of 𝑓; that is, 𝑓 = 𝑓 ⊕ 1.

Proof. Using (15), for any 𝜔 ∈ F𝑛−1
2

, 𝜔
𝑛
∈ F
2
, we have

NH
𝑔
(𝜔, 𝜔
𝑛
)

=

{{{
{{{
{

1

√2
NH
𝑓
(𝜔) −

𝑖

√2
NH
𝑓
(𝜔) , if 𝜔

𝑛
= 0,

1

√2
NH
𝑓
(𝜔) +

𝑖

√2
NH
𝑓
(𝜔) , if 𝜔

𝑛
= 1,

= (
1

√2
∓

𝑖

√2
)NH

𝑓
(𝜔) .

(35)

Hence

󵄨󵄨󵄨󵄨󵄨NH
𝑔
(𝜔)

󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

√2
∓

𝑖

√2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨NH
𝑓
(𝜔)

󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨NH
𝑓
(𝜔)

󵄨󵄨󵄨󵄨󵄨 . (36)

Since 𝑓 is negabent, |NH
𝑓
(𝜔)| = 1 for all 𝜔

𝑛
∈ F
2
, complet-

ing the proof.

There aremany ways to construct bent functions inB
𝑚+𝑛

starting from bent functions in B
𝑚
and B

𝑛
(see [16, pages

81–96]). Concatenation under certain conditions produces
also bent functions of higher dimension (see [15]). In the
following, we mainly consider Boolean function

𝑔 (𝑥, 𝑥
𝑛+1

, 𝑥
𝑛+2

) = 𝑓
1
(𝑥) ‖ 𝑓

2
(𝑥) ‖ 𝑓

3
(𝑥) ‖ 𝑓

4
(𝑥)

∈ B
𝑛+2

;
(37)

that is, the algebraic normal form of 𝑔(𝑥, 𝑥
𝑛+1

, 𝑥
𝑛+2

) is

𝑔 (𝑥, 𝑥
𝑛+1

, 𝑥
𝑛+2

) = 𝑓
1
⊕ 𝑥
𝑛+1

(𝑓
1
⊕ 𝑓
2
)

⊕ 𝑥
𝑛+2

(𝑓
1
⊕ 𝑓
3
)

⊕ 𝑥
𝑛+1

𝑥
𝑛+2

(𝑓
1
⊕ 𝑓
2
⊕ 𝑓
3
⊕ 𝑓
4
) ,

(38)

where 𝑓
𝑖
∈ B
𝑛
, 𝑖 = 1, 2, 3, 4, 𝑥 ∈ F𝑛

2
, 𝑥
𝑛+1

, 𝑥
𝑛+2

∈ F
2
. We first

establish an important technical formula.
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Theorem 9. Let function 𝑔 be defined as (37); then

NH
𝑔
(𝜔) =

1

2
[NH

𝑓
1

(𝑢) + 𝑖 (−1)
𝑎
NH
𝑓
2

(𝑢)

+ 𝑖 (−1)
𝑏
NH
𝑓
3

(𝑢) − (−1)
𝑎⊕𝑏

NH
𝑓
4

(𝑢)] ,

(39)

where 𝜔 = (𝑢, 𝑎, 𝑏) ∈ F𝑛+2
2

, 𝑢 ∈ F𝑛
2
, 𝑎, 𝑏 ∈ F

2
.

Proof. Using (5), we have

NH
𝑔
(𝜔)

= 2−(𝑛+2)/2 ∑
(𝑥,𝑥
𝑛+1
,𝑥
𝑛+2
)∈F𝑛+2
2

(−1)
𝑔(𝑥,𝑥

𝑛+1
,𝑥
𝑛+2
)⊕(𝑥,𝑥

𝑛+1
,𝑥
𝑛+2
)⋅𝜔

⋅ 𝑖𝑤𝑡(𝑥,𝑥𝑛+1 ,𝑥𝑛+2) =
1

2

⋅ 2−𝑛/2 ∑
(𝑥,𝑥
𝑛+1
,𝑥
𝑛+2
)∈F𝑛+2
2

(−1)
𝑔(𝑥,𝑥

𝑛+1
,𝑥
𝑛+2
)⊕𝑢⋅𝑥⊕𝑎𝑥

𝑛+1
⊕𝑏𝑥
𝑛+2

⋅ 𝑖𝑤𝑡(𝑥,𝑥𝑛+1 ,𝑥𝑛+2) =
1

2

⋅ 2−𝑛/2∑
𝑥∈F𝑛
2

∑
(𝑥
𝑛+1
,𝑥
𝑛+2
)∈F2
2

(−1)
𝑔(𝑥,𝑥

𝑛+1
,𝑥
𝑛+2
)⊕𝑢⋅𝑥⊕𝑎𝑥

𝑛+1
⊕𝑏𝑥
𝑛+2

⋅ 𝑖𝑤𝑡(𝑥,𝑥𝑛+1 ,𝑥𝑛+2) =
1

2
⋅ 2−𝑛/2 [

[

∑
𝑥∈F𝑛
2

(−1)
𝑓
1
(𝑥)⊕𝑢⋅𝑥 𝑖𝑤𝑡(𝑥)

+ ∑
𝑥∈F𝑛
2

(−1)
𝑓
2
(𝑥)⊕𝑢⋅𝑥⊕𝑎 𝑖𝑤𝑡(𝑥)+1 + ∑

𝑥∈F𝑛
2

(−1)
𝑓
3
(𝑥)⊕𝑢⋅𝑥⊕𝑏

⋅ 𝑖𝑤𝑡(𝑥)+1 + ∑
𝑥∈F𝑛
2

(−1)
𝑓
4
(𝑥)⊕𝑢⋅𝑥⊕𝑎⊕𝑏 𝑖𝑤𝑡(𝑥)+2]

]

=
1

2
[NH

𝑓
1

(𝑢) + 𝑖 (−1)
𝑎
NH
𝑓
2

(𝑢) + 𝑖 (−1)
𝑏

⋅NH
𝑓
3

(𝑢) − (−1)
𝑎⊕𝑏

NH
𝑓
4

(𝑢)] .

(40)

This completes the proof.

In (37), if 𝑓
1
= 𝑓
4
= 𝑓, 𝑓

2
= 𝑓
3
= 𝑓, then we obtain the

following.

Corollary 10. Let 𝑓 ∈ B
𝑛
. Then 𝑔 ∈ B

𝑛+2
= 𝑓 ‖ 𝑓 ‖ 𝑓 ‖ 𝑓

is negabent if and only if 𝑓 is also negabent functions.

Proof. According to (39), we have

NH
𝑔
(𝑢, 𝑎, 𝑏) =

1 − (−1)𝑎⊕𝑏

2
NH
𝑓
(𝑢)

− 𝑖
(−1)𝑎 + (−1)𝑏

2
NH
𝑓
(𝑢)

=

{{{{{{{
{{{{{{{
{

−𝑖NH
𝑓
(𝑢) , 𝑎 = 0, 𝑏 = 0,

NH
𝑓
(𝑢) , 𝑎 = 0, 𝑏 = 1,

NH
𝑓
(𝑢) , 𝑎 = 0, 𝑏 = 1,

𝑖NH
𝑓
(𝑢) , 𝑎 = 1, 𝑏 = 1.

(41)

Thus, NH
𝑔
(𝑢, 𝑎, 𝑏) ∈ {NH

𝑓
(𝑢), ±𝑖NH

𝑓
(𝑢)} for all (𝑢, 𝑎,

𝑏) ∈ F𝑛
2
× F
2
× F
2
. Hence, if 𝑔 is negabent, then 𝑓 is

also negabent. Conversely, if 𝑓 is negabent, then 𝑔 is also
negabent, completing the proof.

4. Nega-Hadamard Transform and
Nega-Autocorrelation Coefficients of
a Class of Boolean Function

In this section, we mainly study the function 𝑔(𝑥) ∈ B
𝑛

expressed as

𝑔 (𝑥) = 𝑓 (𝐴𝑥 ⊕ 𝑎) ⊕ 𝑏 ⋅ 𝑥 ⊕ 𝑐, (42)

where 𝑓(𝑥) ∈ B
𝑛
, 𝑎, 𝑏 ∈ F𝑛

2
, 𝑐 ∈ F

2
, and 𝐴 is an 𝑛 × 𝑛

orthogonal matrix. Here we compute the nega-Hadamard
transform and nega-autocorrelation coefficient of 𝑔.

Theorem 11. Let 𝑔 ∈ B
𝑛
, with the same data as above; then

NH
𝑔
(𝜔)

= (−1)
𝑐⊕𝐴(𝑏⊕𝜔)⋅𝑎 𝑖𝑤𝑡(𝑎)NH

𝑓
(𝐴 (𝑏 ⊕ 𝜔) ⊕ 𝑎) ,

(43)

NC
𝑔
(𝛼) = (−1)

(𝐴
𝑇

𝑎⊕𝑏)⋅𝛼
NC
𝑓
(𝐴𝛼) . (44)

Proof. According to (5), we have

NH
𝑔
(𝜔) = 2−𝑛/2∑

𝑥∈F𝑛
2

(−1)
𝑓(𝐴𝑥⊕𝑎)⊕𝑏⋅𝑥⊕𝑐⊕𝜔⋅𝑥 𝑖𝑤𝑡(𝑥)

= (−1)
𝑐 2−𝑛/2∑

𝑥∈F𝑛
2

(−1)
𝑓(𝐴𝑥⊕𝑎)⊕(𝑏⊕𝜔)⋅𝑥 𝑖𝑤𝑡(𝑥).

(45)

Setting 𝑦 = 𝐴𝑥⊕𝑎, since𝐴 is orthogonal matrix, then𝐴𝑇𝐴 =

𝐴𝐴𝑇 = 𝐼, where 𝐴𝑇 is the transpose of 𝐴 and 𝐼 is the identity
matrix; then 𝑥 = 𝐴𝑇(𝑦⊕𝑎). Furthermore, when 𝑥 ranges over
F𝑛
2
, so do 𝐴𝑥 and 𝐴𝑥 ⊕ 𝑎. Thus

NH
𝑔
(𝜔) = (−1)

𝑐

⋅ 2−𝑛/2∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕(𝑏⊕𝜔)⋅(𝐴

𝑇

𝑦+𝐴
𝑇

𝑎) 𝑖𝑤𝑡(𝐴
𝑇

(𝑦⊕𝑎))

= (−1)
𝑐⊕(𝑏⊕𝜔)⋅𝐴

𝑇

𝑎

⋅ 2−𝑛/2∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕(𝑏⊕𝜔)⋅𝐴

𝑇

𝑦 𝑖𝑤𝑡(𝐴
𝑇

(𝑦⊕𝑎))

= (−1)
𝑐⊕𝐴(𝑏⊕𝜔)⋅𝑎

⋅ 2−𝑛/2∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕𝐴(𝑏⊕𝜔)⋅𝑦 𝑖𝑤𝑡(𝐴

𝑇

(𝑦⊕𝑎)).

(46)
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Since

𝑤𝑡 (𝐴𝑇 (𝑦 ⊕ 𝑎)) = (𝐴𝑇 (𝑦 ⊕ 𝑎))
𝑇

𝐼 (𝐴𝑇 (𝑦 ⊕ 𝑎))

= (𝑦 ⊕ 𝑎)
𝑇

𝐴𝐼𝐴𝑇 (𝑦 ⊕ 𝑎)

= (𝑦 ⊕ 𝑎)
𝑇

𝐼 (𝑦 ⊕ 𝑎) = 𝑤𝑡 (𝑦 ⊕ 𝑎) ,

𝑖𝑤𝑡(𝑦⊕𝑎) = 𝑖𝑤𝑡(𝑦)+𝑤𝑡(𝑎)−2𝑤𝑡(𝑦∗𝑎)

= 𝑖𝑤𝑡(𝑦)+𝑤𝑡(𝑎)𝑖−2𝑤𝑡(𝑦∗𝑎)

= 𝑖𝑤𝑡(𝑦)+𝑤𝑡(𝑎) (−1)
−𝑤𝑡(𝑦∗𝑎)

= 𝑖𝑤𝑡(𝑦)+𝑤𝑡(𝑎) (−1)
𝑤𝑡(𝑦∗𝑎)

= 𝑖𝑤𝑡(𝑦)+𝑤𝑡(𝑎) (−1)
𝑦⋅𝑎 ,

(47)

which implies that

NH
𝑔
(𝜔) = (−1)

𝑐⊕𝐴(𝑏⊕𝜔)⋅𝑎 2−𝑛/2∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕𝐴(𝑏⊕𝜔)⋅𝑦

⋅ 𝑖𝑤𝑡(𝑦⊕𝑎) = (−1)
𝑐⊕𝐴(𝑏⊕𝜔)⋅𝑎

⋅ 2−𝑛/2∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕𝐴(𝑏⊕𝜔)⋅𝑦 𝑖𝑤𝑡(𝑦)+𝑤𝑡(𝑎) (−1)

𝑦⋅𝑎

= (−1)
𝑐⊕𝐴(𝑏⊕𝜔)⋅𝑎

⋅ 𝑖𝑤𝑡(𝑎)2−𝑛/2∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕(𝐴(𝑏⊕𝜔)⊕𝑎)⋅𝑦 𝑖𝑤𝑡(𝑦)

= (−1)
𝑐⊕𝐴(𝑏⊕𝜔)⋅𝑎 𝑖𝑤𝑡(𝑎)NH

𝑓
(𝐴 (𝑏 ⊕ 𝜔) ⊕ 𝑎) .

(48)

Thus (43) holds. Next we will compute (44). Set

ℎ (𝑥) = 𝑔 (𝑥) ⊕ 𝑔 (𝑥 ⊕ 𝛼) ⊕ 𝛼 ⋅ 𝑥

= 𝑓 (𝐴𝑥 ⊕ 𝑎) ⊕ 𝑏 ⋅ 𝑥 ⊕ 𝑐 ⊕ 𝑓 (𝐴 (𝑥 ⊕ 𝛼) ⊕ 𝑎) ⊕ 𝑏

⋅ (𝑥 ⊕ 𝛼) ⊕ 𝑐 ⊕ 𝛼 ⋅ 𝑥

= 𝑓 (𝐴𝑥 ⊕ 𝑎) ⊕ 𝑓 (𝐴𝑥 ⊕ 𝐴𝛼 ⊕ 𝑎) ⊕ 𝑏 ⋅ 𝛼 ⊕ 𝛼 ⋅ 𝑥.

(49)

So by using (6), we get

NC
𝑔
(𝛼) = ∑

𝑥∈F𝑛
2

(−1)
𝑔(𝑥)⊕𝑔(𝑥⊕𝛼)⊕𝛼⋅𝑥

= ∑
𝑥∈F𝑛
2

(−1)
𝑓(𝐴𝑥⊕𝑎)⊕𝑓(𝐴𝑥⊕𝐴𝛼⊕𝑎)⊕𝑏⋅𝛼⊕𝛼⋅𝑥

= (−1)
𝑏⋅𝛼 ∑
𝑥∈F𝑛
2

(−1)
𝑓(𝐴𝑥⊕𝑎)⊕𝑓(𝐴𝑥⊕𝑎⊕𝐴𝛼)⊕𝛼⋅𝑥 .

(50)

Setting𝑦 = 𝐴𝑥⊕𝑎, as𝐴 is orthogonalmatrix, then𝑥 = 𝐴𝑇(𝑦⊕

𝑎) = 𝐴𝑇𝑦 ⊕ 𝐴𝑇𝑎. Therefore,

NC
𝑔
(𝛼) = (−1)

𝑏⋅𝛼 ∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕𝑓(𝑦⊕𝐴𝛼)⊕𝛼⋅(𝐴

𝑇

𝑦⊕𝐴
𝑇

𝑎)

= (−1)
(𝐴
𝑇

𝑎⊕𝑏)⋅𝛼 ∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕𝑓(𝑦⊕𝐴𝛼)⊕𝛼⋅𝐴

𝑇

𝑦

= (−1)
(𝐴
𝑇

𝑎⊕𝑏)⋅𝛼 ∑
𝑦∈F𝑛
2

(−1)
𝑓(𝑦)⊕𝑓(𝑦⊕𝐴𝛼)⊕𝐴𝛼⋅𝑦

= (−1)
(𝐴
𝑇

𝑎⊕𝑏)⋅𝛼
NC
𝑓
(𝐴𝛼) .

(51)

This completes the proof.

By Theorem 11, we can easily get the following results
proved in [6, 9, Theorem 1 (a) and (d)].

Corollary 12. Let 𝑓(𝑥) ∈ B
𝑛
; then one obtains the following.

(a) ConsiderNH
𝑓
(𝜔) = −NH

𝑓
(𝜔), 𝜔 ∈ F𝑛

2
.

(b) If 𝑔(𝑥) = 𝑓(𝐴𝑥 ⊕ 𝑎), then NH
𝑔
(𝜔) =

(−1)𝐴𝜔⋅𝑎𝑖𝑤𝑡(𝑎)NH
𝑓
(𝐴𝜔 ⊕ 𝑎), where 𝐴 is an 𝑛 × 𝑛

orthogonal matrix, 𝑎 ∈ F𝑛
2
.

It is known that if𝑓(𝑥) is a bent function in (42), then the
function 𝑔(𝑥) is also bent, where 𝐴 is an 𝑛 × 𝑛 nonsingular
matrix. The Boolean function 𝑓(𝑥) ∈ B

𝑛
is a negabent

function if |NH
𝑓
(𝜔)| = 1. Therefore, according to (43), we

get that if𝑓(𝑥) is a negabent function, then𝑔 is also negabent.
The following result summarizes this discussion.

Corollary 13. With the same data as in Theorem 3, then if
𝑓(𝑥) is bent-negabent, 𝑔(𝑥) is also bent-negabent.

In (42), by choosing some special cases and Corollary 13,
we have the following.

Corollary 14. Let 𝑓(𝑥) ∈ B
𝑛
be a bent-negabent function;

then one obtains the following.

(a) 𝑓
1
(𝑥) = 𝑓(𝑥 ⊕ 𝜔) is bent-negabent, where 𝜔 ∈ F𝑛

2
.

(b) 𝑓
2
(𝑥) = 𝑓(𝑥)⊕𝑎 ⋅𝑥⊕𝑏 is bent-negabent, where 𝑎 ∈ F𝑛

2
,

𝑏 ∈ F
2
.

Remark 15. Corollary 12 wasmentioned in [3, Lemma 2], and
Corollary 10 was proved in [4, Theorem 2] by applying [3,
Lemma 2]. However, if we use Theorem 11, these results are
easily obtained.

5. Conclusion

In this paper, the special Boolean functions by concatenation
are presented. We investigate their nega-Hadamard trans-
forms, nega-autocorrelation coefficients, sum-of-squares
indicators, and so on. We establish a new equivalent state-
ment on 𝑓

1
‖ 𝑓
2
which is negabent function. Also, we give

an alternate proof of Theorem 13 [6, 9]. Based on them,
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the construction for generating the negabent functions by
concatenation is given. Finally, the function expressed as
𝑓(𝐴𝑥 ⊕ 𝑎) ⊕ 𝑏 ⋅ 𝑥 ⊕ 𝑐 is discussed. The nega-Hadamard
transform and nega-autocorrelation coefficient of this
function are derived. By applying these results, some
properties are obtained. We hope that these results will be
helpful in further studying of Boolean functions.
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