1,753 research outputs found

    LiDAR and Camera Detection Fusion in a Real Time Industrial Multi-Sensor Collision Avoidance System

    Full text link
    Collision avoidance is a critical task in many applications, such as ADAS (advanced driver-assistance systems), industrial automation and robotics. In an industrial automation setting, certain areas should be off limits to an automated vehicle for protection of people and high-valued assets. These areas can be quarantined by mapping (e.g., GPS) or via beacons that delineate a no-entry area. We propose a delineation method where the industrial vehicle utilizes a LiDAR {(Light Detection and Ranging)} and a single color camera to detect passive beacons and model-predictive control to stop the vehicle from entering a restricted space. The beacons are standard orange traffic cones with a highly reflective vertical pole attached. The LiDAR can readily detect these beacons, but suffers from false positives due to other reflective surfaces such as worker safety vests. Herein, we put forth a method for reducing false positive detection from the LiDAR by projecting the beacons in the camera imagery via a deep learning method and validating the detection using a neural network-learned projection from the camera to the LiDAR space. Experimental data collected at Mississippi State University's Center for Advanced Vehicular Systems (CAVS) shows the effectiveness of the proposed system in keeping the true detection while mitigating false positives.Comment: 34 page

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die Fähigkeit zur Perzeption als eine notwendige Voraussetzung für eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption für strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, während die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterrepräsentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natürlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und ähnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell für diesen Anwendungsbereich konzipiert und optimiert werden müssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden für unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline für autonome Geländefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergänzen sich gegenseitig. Darüber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden für jede Ebene eine zuverlässige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewährleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns für eine Vielzahl von Geländefahrzeugen und Anwendungsfällen je nach Bedarf. Low-Level-Perzeption gewährleistet eine eng gekoppelte Konfidenzbewertung für rohe 2D- und 3D-Sensordaten, um Sensorausfälle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewährleisten. Darüber hinaus werden neuartige Kalibrierungs- und Registrierungsansätze für Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur Schätzung der Disparität von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren für Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die Disparität aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schätzt. Neuartige Disparitätsfehlermetriken und eine Evaluierungs-Toolbox für die 3D-Rekonstruktion von Stereobildern ergänzen die vorgeschlagenen Methoden zur Disparitätsschätzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine Domänentransferanalyse für State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen für eine möglichst exakte Segmentierung in neuen Zieldomänen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz für 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur Erklärbarkeit künstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhängigen Erklärungen für CNN-Vorhersagen. Altlastensanierung und Militärlogistik sind die beiden Hauptanwendungsfälle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die Lücke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette für autonome Geländefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lässt sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen für autonome Geländefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswürdige Perzeption unstrukturierter Umgebungen gewährleistet

    Monocular 3D Object Detection via Ego View-to-Bird’s Eye View Translation

    Get PDF
    The advanced development in autonomous agents like self-driving cars can be attributed to computer vision, a branch of artificial intelligence that enables software to understand the content of image and video. These autonomous agents require a three-dimensional modelling of its surrounding in order to operate reliably in the real-world. Despite the significant progress of 2D object detectors, they have a critical limitation in location sensitive applications as they do not provide accurate physical information of objects in 3D space. 3D object detection is a promising topic that can provide relevant solutions which could improve existing 2D based applications. Due to the advancements in deep learning methods and relevant datasets, the task of 3D scene understanding has evolved greatly in the past few years. 3D object detection and localization are crucial in autonomous driving tasks such as obstacle avoidance, path planning and motion control. Traditionally, there have been successful methods towards 3D object detection but they rely on highly expensive 3D LiDAR sensors for accurate depth information. On the other hand, 3D object detection from single monocular images is inexpensive but lacks in accuracy. The primary reason for such a disparity in performance is that the monocular image-based methods attempt at inferring 3D information from 2D images. In this work, we try to bridge the performance gap observed in single image input by introducing different mapping strategies between the 2D image data and its corresponding 3D representation and use it to perform object detection in 3D. The performance of the proposed method is evaluated on the popular KITTI 3D object detection benchmark dataset
    • …
    corecore