8,715 research outputs found

    Verification of Imperative Programs by Constraint Logic Program Transformation

    Full text link
    We present a method for verifying partial correctness properties of imperative programs that manipulate integers and arrays by using techniques based on the transformation of constraint logic programs (CLP). We use CLP as a metalanguage for representing imperative programs, their executions, and their properties. First, we encode the correctness of an imperative program, say prog, as the negation of a predicate 'incorrect' defined by a CLP program T. By construction, 'incorrect' holds in the least model of T if and only if the execution of prog from an initial configuration eventually halts in an error configuration. Then, we apply to program T a sequence of transformations that preserve its least model semantics. These transformations are based on well-known transformation rules, such as unfolding and folding, guided by suitable transformation strategies, such as specialization and generalization. The objective of the transformations is to derive a new CLP program TransfT where the predicate 'incorrect' is defined either by (i) the fact 'incorrect.' (and in this case prog is not correct), or by (ii) the empty set of clauses (and in this case prog is correct). In the case where we derive a CLP program such that neither (i) nor (ii) holds, we iterate the transformation. Since the problem is undecidable, this process may not terminate. We show through examples that our method can be applied in a rather systematic way, and is amenable to automation by transferring to the field of program verification many techniques developed in the field of program transformation.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    A Transformation-based Implementation for CLP with Qualification and Proximity

    Get PDF
    Uncertainty in logic programming has been widely investigated in the last decades, leading to multiple extensions of the classical LP paradigm. However, few of these are designed as extensions of the well-established and powerful CLP scheme for Constraint Logic Programming. In a previous work we have proposed the SQCLP (proximity-based qualified constraint logic programming) scheme as a quite expressive extension of CLP with support for qualification values and proximity relations as generalizations of uncertainty values and similarity relations, respectively. In this paper we provide a transformation technique for transforming SQCLP programs and goals into semantically equivalent CLP programs and goals, and a practical Prolog-based implementation of some particularly useful instances of the SQCLP scheme. We also illustrate, by showing some simple-and working-examples, how the prototype can be effectively used as a tool for solving problems where qualification values and proximity relations play a key role. Intended use of SQCLP includes flexible information retrieval applications.Comment: 49 pages, 5 figures, 1 table, preliminary version of an article of the same title, published as Technical Report SIC-4-10, Universidad Complutense, Departamento de Sistemas Inform\'aticos y Computaci\'on, Madrid, Spai

    Using parametric set constraints for locating errors in CLP programs

    Full text link
    This paper introduces a framework of parametric descriptive directional types for constraint logic programming (CLP). It proposes a method for locating type errors in CLP programs and presents a prototype debugging tool. The main technique used is checking correctness of programs w.r.t. type specifications. The approach is based on a generalization of known methods for proving correctness of logic programs to the case of parametric specifications. Set-constraint techniques are used for formulating and checking verification conditions for (parametric) polymorphic type specifications. The specifications are expressed in a parametric extension of the formalism of term grammars. The soundness of the method is proved and the prototype debugging tool supporting the proposed approach is illustrated on examples. The paper is a substantial extension of the previous work by the same authors concerning monomorphic directional types.Comment: 64 pages, To appear in Theory and Practice of Logic Programmin

    A practical approach to the global analysis of CLP programs

    Get PDF
    This paper presents and illustrates with an example a practical approach to the dataflow analysis of programs written in constraint logic programming (CLP) languages using abstract interpretation. It is first argued that, from the framework point of view, it sufnces to propose relatively simple extensions of traditional analysis methods which have already been proved useful and practical and for which efncient fixpoint algorithms have been developed. This is shown by proposing a simple but quite general extensión of Bruynooghe's traditional framework to the analysis of CLP programs. In this extensión constraints are viewed not as "suspended goals" but rather as new information in the store, following the traditional view of CLP. Using this approach, and as an example of its use, a complete, constraint system independent, abstract analysis is presented for approximating definiteness information. The analysis is in fact of quite general applicability. It has been implemented and used in the analysis of CLP(R) and Prolog-III applications. Results from the implementation of this analysis are also presented

    Proving Correctness of Imperative Programs by Linearizing Constrained Horn Clauses

    Full text link
    We present a method for verifying the correctness of imperative programs which is based on the automated transformation of their specifications. Given a program prog, we consider a partial correctness specification of the form {φ}\{\varphi\} prog {ψ}\{\psi\}, where the assertions φ\varphi and ψ\psi are predicates defined by a set Spec of possibly recursive Horn clauses with linear arithmetic (LA) constraints in their premise (also called constrained Horn clauses). The verification method consists in constructing a set PC of constrained Horn clauses whose satisfiability implies that {φ}\{\varphi\} prog {ψ}\{\psi\} is valid. We highlight some limitations of state-of-the-art constrained Horn clause solving methods, here called LA-solving methods, which prove the satisfiability of the clauses by looking for linear arithmetic interpretations of the predicates. In particular, we prove that there exist some specifications that cannot be proved valid by any of those LA-solving methods. These specifications require the proof of satisfiability of a set PC of constrained Horn clauses that contain nonlinear clauses (that is, clauses with more than one atom in their premise). Then, we present a transformation, called linearization, that converts PC into a set of linear clauses (that is, clauses with at most one atom in their premise). We show that several specifications that could not be proved valid by LA-solving methods, can be proved valid after linearization. We also present a strategy for performing linearization in an automatic way and we report on some experimental results obtained by using a preliminary implementation of our method.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Test Data Generation of Bytecode by CLP Partial Evaluation

    Full text link
    We employ existing partial evaluation (PE) techniques developed for Constraint Logic Programming (CLP) in order to automatically generate test-case generators for glass-box testing of bytecode. Our approach consists of two independent CLP PE phases. (1) First, the bytecode is transformed into an equivalent (decompiled) CLP program. This is already a well studied transformation which can be done either by using an ad-hoc decompiler or by specialising a bytecode interpreter by means of existing PE techniques. (2) A second PE is performed in order to supervise the generation of test-cases by execution of the CLP decompiled program. Interestingly, we employ control strategies previously defined in the context of CLP PE in order to capture coverage criteria for glass-box testing of bytecode. A unique feature of our approach is that, this second PE phase allows generating not only test-cases but also test-case generators. To the best of our knowledge, this is the first time that (CLP) PE techniques are applied for test-case generation as well as to generate test-case generators

    Generalization Strategies for the Verification of Infinite State Systems

    Full text link
    We present a method for the automated verification of temporal properties of infinite state systems. Our verification method is based on the specialization of constraint logic programs (CLP) and works in two phases: (1) in the first phase, a CLP specification of an infinite state system is specialized with respect to the initial state of the system and the temporal property to be verified, and (2) in the second phase, the specialized program is evaluated by using a bottom-up strategy. The effectiveness of the method strongly depends on the generalization strategy which is applied during the program specialization phase. We consider several generalization strategies obtained by combining techniques already known in the field of program analysis and program transformation, and we also introduce some new strategies. Then, through many verification experiments, we evaluate the effectiveness of the generalization strategies we have considered. Finally, we compare the implementation of our specialization-based verification method to other constraint-based model checking tools. The experimental results show that our method is competitive with the methods used by those other tools. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 24 pages, 2 figures, 5 table
    • …
    corecore