73,517 research outputs found

    Optimal placement of relay nodes over limited positions in wireless sensor networks

    Get PDF
    This paper tackles the challenge of optimally placing relay nodes (RNs) in wireless sensor networks given a limited set of positions. The proposed solution consists of: 1) the usage of a realistic physical layer model based on a Rayleigh block-fading channel; 2) the calculation of the signal-to-interference-plus-noise ratio (SINR) considering the path loss, fast fading, and interference; and 3) the usage of a weighted communication graph drawn based on outage probabilities determined from the calculated SINR for every communication link. Overall, the proposed solution aims for minimizing the outage probabilities when constructing the routing tree, by adding a minimum number of RNs that guarantee connectivity. In comparison to the state-of-the art solutions, the conducted simulations reveal that the proposed solution exhibits highly encouraging results at a reasonable cost in terms of the number of added RNs. The gain is proved high in terms of extending the network lifetime, reducing the end-to-end- delay, and increasing the goodput

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Applications of Geometric Algorithms to Reduce Interference in Wireless Mesh Network

    Full text link
    In wireless mesh networks such as WLAN (IEEE 802.11s) or WMAN (IEEE 802.11), each node should help to relay packets of neighboring nodes toward gateway using multi-hop routing mechanisms. Wireless mesh networks usually intensively deploy mesh nodes to deal with the problem of dead spot communication. However, the higher density of nodes deployed, the higher radio interference occurred. This causes significant degradation of system performance. In this paper, we first convert network problems into geometry problems in graph theory, and then solve the interference problem by geometric algorithms. We first define line intersection in a graph to reflect radio interference problem in a wireless mesh network. We then use plan sweep algorithm to find intersection lines, if any; employ Voronoi diagram algorithm to delimit the regions among nodes; use Delaunay Triangulation algorithm to reconstruct the graph in order to minimize the interference among nodes. Finally, we use standard deviation to prune off those longer links (higher interference links) to have a further enhancement. The proposed hybrid solution is proved to be able to significantly reduce interference in a wireless mesh network in O(n log n) time complexity.Comment: 24 Pages, JGraph-Hoc Journal 201
    • …
    corecore