6,801 research outputs found

    Generalized Finite Algorithms for Constructing Hermitian Matrices with Prescribed Diagonal and Spectrum

    Get PDF
    In this paper, we present new algorithms that can replace the diagonal entries of a Hermitian matrix by any set of diagonal entries that majorize the original set without altering the eigenvalues of the matrix. They perform this feat by applying a sequence of (N-1) or fewer plane rotations, where N is the dimension of the matrix. Both the Bendel-Mickey and the Chan-Li algorithms are special cases of the proposed procedures. Using the fact that a positive semidefinite matrix can always be factored as \mtx{X^\adj X}, we also provide more efficient versions of the algorithms that can directly construct factors with specified singular values and column norms. We conclude with some open problems related to the construction of Hermitian matrices with joint diagonal and spectral properties

    Optimal CDMA signatures: a finite-step approach

    Get PDF
    A description of optimal sequences for direct-sequence code division multiple access is a byproduct of recent characterizations of the sum capacity. The paper restates the sequence design problem as an inverse singular value problem and shows that it can be solved with finite-step algorithms from matrix analysis. Relevant algorithms are reviewed and a new one-sided construction is proposed that obtains the sequences directly instead of computing the Gram matrix of the optimal signatures

    Finite-step algorithms for constructing optimal CDMA signature sequences

    Get PDF
    A description of optimal sequences for direct-spread code-division multiple access (DS-CDMA) is a byproduct of recent characterizations of the sum capacity. This paper restates the sequence design problem as an inverse singular value problem and shows that the problem can be solved with finite-step algorithms from matrix theory. It proposes a new one-sided algorithm that is numerically stable and faster than previous methods

    Designing structured tight frames via an alternating projection method

    Get PDF
    Tight frames, also known as general Welch-bound- equality sequences, generalize orthonormal systems. Numerous applications - including communications, coding, and sparse approximation- require finite-dimensional tight frames that possess additional structural properties. This paper proposes an alternating projection method that is versatile enough to solve a huge class of inverse eigenvalue problems (IEPs), which includes the frame design problem. To apply this method, one needs only to solve a matrix nearness problem that arises naturally from the design specifications. Therefore, it is the fast and easy to develop versions of the algorithm that target new design problems. Alternating projection will often succeed even if algebraic constructions are unavailable. To demonstrate that alternating projection is an effective tool for frame design, the paper studies some important structural properties in detail. First, it addresses the most basic design problem: constructing tight frames with prescribed vector norms. Then, it discusses equiangular tight frames, which are natural dictionaries for sparse approximation. Finally, it examines tight frames whose individual vectors have low peak-to-average-power ratio (PAR), which is a valuable property for code-division multiple-access (CDMA) applications. Numerical experiments show that the proposed algorithm succeeds in each of these three cases. The appendices investigate the convergence properties of the algorithm

    Diagonal unitary entangling gates and contradiagonal quantum states

    Full text link
    Nonlocal properties of an ensemble of diagonal random unitary matrices of order N2N^2 are investigated. The average Schmidt strength of such a bipartite diagonal quantum gate is shown to scale as logN\log N, in contrast to the logN2\log N^2 behavior characteristic to random unitary gates. Entangling power of a diagonal gate UU is related to the von Neumann entropy of an auxiliary quantum state ρ=AA/N2\rho=AA^{\dagger}/N^2, where the square matrix AA is obtained by reshaping the vector of diagonal elements of UU of length N2N^2 into a square matrix of order NN. This fact provides a motivation to study the ensemble of non-hermitian unimodular matrices AA, with all entries of the same modulus and random phases and the ensemble of quantum states ρ\rho, such that all their diagonal entries are equal to 1/N1/N. Such a state is contradiagonal with respect to the computational basis, in sense that among all unitary equivalent states it maximizes the entropy copied to the environment due to the coarse graining process. The first four moments of the squared singular values of the unimodular ensemble are derived, based on which we conjecture a connection to a recently studied combinatorial object called the "Borel triangle". This allows us to find exactly the mean von Neumann entropy for random phase density matrices and the average entanglement for the corresponding ensemble of bipartite pure states.Comment: 14 pages, 6 figure

    Congruences and Canonical Forms for a Positive Matrix: Application to the Schweinler-Wigner Extremum Principle

    Get PDF
    It is shown that a N×NN\times N real symmetric [complex hermitian] positive definite matrix VV is congruent to a diagonal matrix modulo a pseudo-orthogonal [pseudo-unitary] matrix in SO(m,n)SO(m,n) [ SU(m,n)SU(m,n)], for any choice of partition N=m+nN=m+n. It is further shown that the method of proof in this context can easily be adapted to obtain a rather simple proof of Williamson's theorem which states that if NN is even then VV is congruent also to a diagonal matrix modulo a symplectic matrix in Sp(N,R)Sp(N,{\cal R}) [Sp(N,C)Sp(N,{\cal C})]. Applications of these results considered include a generalization of the Schweinler-Wigner method of `orthogonalization based on an extremum principle' to construct pseudo-orthogonal and symplectic bases from a given set of linearly independent vectors.Comment: 7 pages, latex, no figure
    corecore