1,344 research outputs found

    Randomized Algorithms for Approximating a Connected Dominating Set in Wireless Sensor Networks

    Get PDF
    A Connected Dominating Set (CDS) of a graph representing a Wireless Sensor Network can be used as a virtual backbone for routing through the network. Since the sensors in the network are constrained by limited battery life, we desire a minimal CDS for the network, a known NP-hard problem. In this paper we present three randomized algorithms for constructing a CDS. We evaluate our algorithms using simulations and compare them to the two-hop K2 algorithm and two other greedy algorithms from the literature. After pruning, the randomized algorithms construct a CDS that are generally equivalent in size to those constructed by K2 while being asymptotically better in time and message complexity. This shows the potential of significant energy savings in using a randomized approach as a result of the reduced complexity

    Efficient self protection algorithms for static wireless sensor networks

    Full text link
    Abstract—Wireless sensor networks have been widely used in many surveillance applications. Due to the importance of sensor nodes in such applications, certain level of protection needs to be provided to them. We study the self protection problem for static wireless sensor networks in this paper. Self protection problem focuses on using sensor nodes to provide protection to themselves instead of the target objects or certain target area, so that the sensor nodes can resist the attacks targeting on them directly. A wireless sensor network is p-self-protected, if for any wireless sensor there are at least p active sensors that can monitor it. The problem finding minimum p-self-protection is NP-complete and no efficient self protection algorithms have been proposed. In this paper, we provide efficient centralized and distributed algorithms with constant approximation ratio for minimum p-self-protection problem. In addition, we design efficient distributed algorithms to not only achieve p-self-protection but also maintain the connectivity of all active sensors. Our simulation confirms the performances of proposed algorithms. I

    Generating quality dominating set

    Full text link
    Construction of a small size dominating set is a well known problem in graph theory and sensor networks. A Connected dominating set (CDS) can be used as a backbone structure in sensor networks for message delivery and broadcast. The general dominating set problem is known to be NP-hard and some approximation algorithms have been proposed; In most approximation algorithms for constructing connected dominating set only the size of the dominating set has been considered. In this thesis we address the problem of constructing connected dominating sets with several quality factors that include (i) diameter, (ii) risk-factor, and (iii) interference. We propose algorithms for constructing CDS of small diameter, reduced risk-factor, and reduced interference. We also report on the experimental investigation of the proposed techniques. Experimental results show that the proposed algorithms are very effective in reducing interference without significantly increasing CDS size. The proposed algorithms are the first algorithms in the sensor network community that address both size and interference for designing dominating sets

    Topology Control, Routing Protocols and Performance Evaluation for Mobile Wireless Ad Hoc Networks

    Get PDF
    A mobile ad-hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the support of any established infrastructure or centralized administration. There are many potential applications based the techniques of MANETs, such as disaster rescue, personal area networking, wireless conference, military applications, etc. MANETs face a number of challenges for designing a scalable routing protocol due to their natural characteristics. Guaranteeing delivery and the capability to handle dynamic connectivity are the most important issues for routing protocols in MANETs. In this dissertation, we will propose four algorithms that address different aspects of routing problems in MANETs. Firstly, in position based routing protocols to design a scalable location management scheme is inherently difficult. Enhanced Scalable Location management Service (EnSLS) is proposed to improve the scalability of existing location management services, and a mathematical model is proposed to compare the performance of the classical location service, GLS, and our protocol, EnSLS. The analytical model shows that EnSLS has better scalability compared with that of GLS. Secondly, virtual backbone routing can reduce communication overhead and speedup the routing process compared with many existing on-demand routing protocols for routing detection. In many studies, Minimum Connected Dominating Set (MCDS) is used to approximate virtual backbones in a unit-disk graph. However finding a MCDS is an NP-hard problem. In the dissertation, we develop two new pure localized protocols for calculating the CDS. One emphasizes forming a small size initial near-optimal CDS via marking process, and the other uses an iterative synchronized method to avoid illegal simultaneously removal of dominating nodes. Our new protocols largely reduce the number of nodes in CDS compared with existing methods. We show the efficiency of our approach through both theoretical analysis and simulation experiments. Finally, using multiple redundant paths for routing is a promising solution. However, selecting an optimal path set is an NP hard problem. We propose the Genetic Fuzzy Multi-path Routing Protocol (GFMRP), which is a multi-path routing protocol based on fuzzy set theory and evolutionary computing
    • …
    corecore