4 research outputs found

    Parameterized complexity of the MINCCA problem on graphs of bounded decomposability

    Full text link
    In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The "Minimum Changeover Cost Arborescence" (MINCCA) problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by G\"oz\"upek et al. [TCS 2016] that the problem is FPT when parameterized by the treewidth and the maximum degree of the input graph. In this article we present the following results for the MINCCA problem: - the problem is W[1]-hard parameterized by the treedepth of the input graph, even on graphs of average degree at most 8. In particular, it is W[1]-hard parameterized by the treewidth of the input graph, which answers the main open problem of G\"oz\"upek et al. [TCS 2016]; - it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph; - it is FPT parameterized by the star tree-cutwidth of the input graph, which is a slightly restricted version of tree-cutwidth. This result strictly generalizes the FPT result given in G\"oz\"upek et al. [TCS 2016]; - it remains NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric costs.Comment: 25 pages, 11 figure

    Parameterized Complexity of Finding a Spanning Tree with Minimum Reload Cost Diameter

    Get PDF
    We study the minimum diameter spanning tree problem under the reload cost model (DIAMETER-TREE for short) introduced by Wirth and Steffan (2001). In this problem, given an undirected edge-colored graph G, reload costs on a path arise at a node where the path uses consecutive edges of different colors. The objective is to find a spanning tree of G of minimum diameter with respect to the reload costs. We initiate a systematic study of the parameterized complexity of the DIAMETER-TREE problem by considering the following parameters: the cost of a solution, and the treewidth and the maximum degree Delta of the input graph. We prove that DIAMETER-TREE is para-np-hard for any combination of two of these three parameters, and that it is FPT parameterized by the three of them. We also prove that the problem can be solved in polynomial time on cactus graphs. This result is somehow surprising since we prove DIAMETER-TREE to be NP-hard on graphs of treewidth two, which is best possible as the problem can be trivially solved on forests. When the reload costs satisfy the triangle inequality, Wirth and Steffan (2001) proved that the problem can be solved in polynomial time on graphs with Delta=3, and Galbiati (2008) proved that it is NP-hard if Delta=4. Our results show, in particular, that without the requirement of the triangle inequality, the problem is NP-hard if Delta=3, which is also best possible. Finally, in the case where the reload costs are polynomially bounded by the size of the input graph, we prove that DIAMETER-TREE is in XP and W[1]-hard parameterized by the treewidth plus Delta
    corecore