19 research outputs found

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes

    ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ์ •๋ฐ€ํ•œ ๋น„์„ ํ˜• ๊ตฌ์กฐ๋ฌผ์˜ ์•„์ด์†Œ-์ง€์˜ค๋ฉ”ํŠธ๋ฆญ ํ˜•์ƒ ์„ค๊ณ„ ๋ฏผ๊ฐ๋„ ํ•ด์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2019. 2. ์กฐ์„ ํ˜ธ.In this thesis, a continuum-based analytical adjoint configuration design sensitivity analysis (DSA) method is developed for gradient-based optimal design of curved built-up structures undergoing finite deformations. First, we investigate basic invariance property of linearized strain measures of a planar Timoshenko beam model which is combined with the selective reduced integration and B-bar projection method to alleviate shear and membrane locking. For a nonlinear structural analysis, geometrically exact beam and shell structural models are basically employed. A planar Kirchhoff beam problem is solved using the rotation-free discretization capability of isogeometric analysis (IGA) due to higher order continuity of NURBS basis function whose superior per-DOF(degree-of-freedom) accuracy over the conventional finite element analysis using Hermite basis function is verified. Various inter-patch continuity conditions including rotation continuity are enforced using Lagrage multiplier and penalty methods. This formulation is combined with a phenomenological constitutive model of shape memory polymer (SMP), and shape programming and recovery processes of SMP structures are simulated. Furthermore, for shear-deformable structures, a multiplicative update of finite rotations by an exponential map of a skew-symmetric matrix is employed. A procedure of explicit parameterization of local orthonormal frames in a spatial curve is presented using the smallest rotation method within the IGA framework. In the configuration DSA, the material derivative is applied to a variational equation, and an orientation design variation of curved structure is identified as a change of embedded local orthonormal frames. In a shell model, we use a regularized variational equation with a drilling rotational DOF. The material derivative of the orthogonal transformation matrix can be evaluated at final equilibrium configuration, which enables to compute design sensitivity using the tangent stiffness at the equilibrium without further iterations. A design optimization method for a constrained structure in a curved domain is also developed, which focuses on a lattice structure design on a specified surface. We define a lattice structure and its design variables on a rectangular plane, and utilize a concept of free-form deformation and a global curve interpolation to obtain an analytical expression for the control net of the structure on curved surface. The material derivative of the analytical expression eventually leads to precise design velocity field. Using this method, the number of design variables is reduced and design parameterization becomes more straightforward. In demonstrative examples, we verify the developed analytical adjoint DSA method in beam and shell structural problems undergoing finite deformations with various kinematic and force boundary conditions. The method is also applied to practical optimal design problems of curved built-up structures. For example, we extremize auxeticity of lattice structures, and experimentally verify nearly constant negative Poisson's ratio during large tensile and compressive deformations by using the 3-D printing and optical deformation measurement technologies. Also, we architect phononic band gap structures having significantly large band gap for mitigating noise in low audible frequency ranges.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€๋ณ€ํ˜•์„ ๊ณ ๋ คํ•œ ํœ˜์–ด์ง„ ์กฐ๋ฆฝ ๊ตฌ์กฐ๋ฌผ์˜ ์—ฐ์†์ฒด ๊ธฐ๋ฐ˜ ํ•ด์„์  ์• ์กฐ์ธ ํ˜•์ƒ ์„ค๊ณ„ ๋ฏผ๊ฐ๋„ ํ•ด์„ ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ํ‰๋ฉด Timoshenko ๋น”์˜ ์„ ํ˜•ํ™”๋œ ๋ณ€ํ˜•๋ฅ ์˜ invariance ํŠน์„ฑ์„ ๊ณ ์ฐฐํ•˜์˜€๊ณ  invariant ์ •์‹ํ™”๋ฅผ ์„ ํƒ์  ์ถ•์†Œ์ ๋ถ„(selective reduced integration) ๊ธฐ๋ฒ• ๋ฐ B-bar projection ๊ธฐ๋ฒ•๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ shear ๋ฐ membrane ์ž ๊น€ ํ˜„์ƒ์„ ํ•ด์†Œํ•˜์˜€๋‹ค. ๋น„์„ ํ˜• ๊ตฌ์กฐ ๋ชจ๋ธ๋กœ์„œ ๊ธฐํ•˜ํ•™์ ์œผ๋กœ ์ •๋ฐ€ํ•œ ๋น” ๋ฐ ์‰˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ํ‰๋ฉด Kirchhoff ๋น” ๋ชจ๋ธ์„ NURBS ๊ธฐ์ €ํ•จ์ˆ˜์˜ ๊ณ ์ฐจ ์—ฐ์†์„ฑ์— ๋”ฐ๋ฅธ ์•„์ด์†Œ-์ง€์˜ค๋ฉ”ํŠธ๋ฆญ ํ•ด์„ ๊ธฐ๋ฐ˜ rotation-free ์ด์‚ฐํ™”๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค๋ฃจ์—ˆ์œผ๋ฉฐ, ๊ธฐ์กด์˜ Hermite ๊ธฐ์ €ํ•จ์ˆ˜ ๊ธฐ๋ฐ˜์˜ ์œ ํ•œ์š”์†Œ๋ฒ•์— ๋น„ํ•ด ์ž์œ ๋„๋‹น ํ•ด์˜ ์ •ํ™•๋„๊ฐ€ ๋†’์Œ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ผ๊ทธ๋ž‘์ง€ ์Šน์ˆ˜๋ฒ• ๋ฐ ๋ฒŒ์น™ ๊ธฐ๋ฒ•์„ ๋„์ž…ํ•˜์—ฌ ํšŒ์ „์˜ ์—ฐ์†์„ฑ์„ ํฌํ•จํ•œ ๋‹ค์–‘ํ•œ ๋‹ค์ค‘ํŒจ์น˜๊ฐ„ ์—ฐ์† ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ˜„์ƒํ•™์  (phenomenological) ํ˜•์ƒ๊ธฐ์–ตํด๋ฆฌ๋จธ (SMP) ์žฌ๋ฃŒ ๊ตฌ์„ฑ๋ฐฉ์ •์‹๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ํ˜•์ƒ์˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ๊ณผ ํšŒ๋ณต ๊ณผ์ •์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜์˜€๋‹ค. ์ „๋‹จ๋ณ€ํ˜•์„ ๊ฒช๋Š” (shear-deformable) ๊ตฌ์กฐ ๋ชจ๋ธ์— ๋Œ€ํ•˜์—ฌ ๋Œ€ํšŒ์ „์˜ ๊ฐฑ์‹ ์„ ๊ต๋Œ€ ํ–‰๋ ฌ์˜ exponential map์— ์˜ํ•œ ๊ณฑ์˜ ํ˜•ํƒœ๋กœ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ณต๊ฐ„์ƒ์˜ ๊ณก์„  ๋ชจ๋ธ์—์„œ ์ตœ์†ŒํšŒ์ „ (smallest rotation) ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๊ตญ์†Œ ์ •๊ทœ์ง๊ต์ขŒํ‘œ๊ณ„์˜ ๋ช…์‹œ์  ๋งค๊ฐœํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ˜•์ƒ ์„ค๊ณ„ ๋ฏผ๊ฐ๋„ ํ•ด์„์„ ์œ„ํ•˜์—ฌ ์ „๋ฏธ๋ถ„์„ ๋ณ€๋ถ„ ๋ฐฉ์ •์‹์— ์ ์šฉํ•˜์˜€์œผ๋ฉฐ ํœ˜์–ด์ง„ ๊ตฌ์กฐ๋ฌผ์˜ ๋ฐฐํ–ฅ ์„ค๊ณ„ ๋ณ€ํ™”๋Š” ๊ตญ์†Œ ์ •๊ทœ์ง๊ต์ขŒํ‘œ๊ณ„์˜ ํšŒ์ „์— ์˜ํ•˜์—ฌ ๊ธฐ์ˆ ๋œ๋‹ค. ์ตœ์ข… ๋ณ€ํ˜• ํ˜•์ƒ์—์„œ ์ง๊ต ๋ณ€ํ™˜ ํ–‰๋ ฌ์˜ ์ „๋ฏธ๋ถ„์„ ๊ณ„์‚ฐํ•จ์œผ๋กœ์จ ๋Œ€ํšŒ์ „ ๋ฌธ์ œ์—์„œ ์ถ”๊ฐ€์ ์ธ ๋ฐ˜๋ณต ๊ณ„์‚ฐ์—†์ด ๋ณ€ํ˜• ํ•ด์„์—์„œ์˜ ์ ‘์„ ๊ฐ•์„ฑํ–‰๋ ฌ์— ์˜ํ•ด ํ•ด์„์  ์„ค๊ณ„ ๋ฏผ๊ฐ๋„๋ฅผ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์‰˜ ๊ตฌ์กฐ๋ฌผ์˜ ๊ฒฝ์šฐ ๋ฉด๋‚ด ํšŒ์ „ ์ž์œ ๋„ ๋ฐ ์•ˆ์ •ํ™”๋œ ๋ณ€๋ถ„ ๋ฐฉ์ •์‹์„ ํ™œ์šฉํ•˜์—ฌ ๋ณด๊ฐ•์žฌ(stiffener)์˜ ๋ชจ๋ธ๋ง์„ ์šฉ์ดํ•˜๊ฒŒ ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํœ˜์–ด์ง„ ์˜์—ญ์— ๊ตฌ์†๋˜์–ด์žˆ๋Š” ๊ตฌ์กฐ๋ฌผ์— ๋Œ€ํ•œ ์„ค๊ณ„ ์†๋„์žฅ ๊ณ„์‚ฐ ๋ฐ ์ตœ์  ์„ค๊ณ„๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ ํŠนํžˆ ๊ณก๋ฉด์— ๊ตฌ์†๋œ ๋น” ๊ตฌ์กฐ๋ฌผ์˜ ์„ค๊ณ„๋ฅผ ์ง‘์ค‘์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ž์œ ํ˜•์ƒ๋ณ€ํ˜•(Free-form deformation)๊ธฐ๋ฒ•๊ณผ ์ „์—ญ ๊ณก์„  ๋ณด๊ฐ„๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ ์ง์‚ฌ๊ฐ ํ‰๋ฉด์—์„œ ํ˜•์ƒ ๋ฐ ์„ค๊ณ„ ๋ณ€์ˆ˜๋ฅผ ์ •์˜ํ•˜๊ณ  ๊ณก๋ฉด์ƒ์˜ ๊ณก์„  ํ˜•์ƒ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์กฐ์ •์  ์œ„์น˜๋ฅผ ํ•ด์„์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ด์˜ ์ „๋ฏธ๋ถ„์„ ํ†ตํ•ด ์ •ํ™•ํ•œ ์„ค๊ณ„์†๋„์žฅ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์„ค๊ณ„ ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๊ณ  ์„ค๊ณ„์˜ ๋งค๊ฐœํ™”๊ฐ€ ๊ฐ„ํŽธํ•ด์ง„๋‹ค. ๊ฐœ๋ฐœ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค์–‘ํ•œ ํ•˜์ค‘ ๋ฐ ์šด๋™ํ•™์  ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ๊ฐ–๋Š” ๋น”๊ณผ ์‰˜์˜ ๋Œ€๋ณ€ํ˜• ๋ฌธ์ œ๋ฅผ ํ†ตํ•ด ๊ฒ€์ฆ๋˜๋ฉฐ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ํœ˜์–ด์ง„ ์กฐ๋ฆฝ ๊ตฌ์กฐ๋ฌผ์˜ ์ตœ์  ์„ค๊ณ„์— ์ ์šฉ๋œ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ, ์ „๋‹จ ๊ฐ•์„ฑ ๋ฐ ์ถฉ๊ฒฉ ํก์ˆ˜ ํŠน์„ฑ๊ณผ ๊ฐ™์€ ๊ธฐ๊ณ„์  ๋ฌผ์„ฑ์น˜์˜ ๊ฐœ์„ ์„ ์œ„ํ•ด ํ™œ์šฉ๋˜๋Š” ์˜ค๊ทธ์ œํ‹ฑ (auxetic) ํŠน์„ฑ์ด ๊ทน๋Œ€ํ™”๋œ ๊ฒฉ์ž ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜๋ฉฐ ์ธ์žฅ ๋ฐ ์••์ถ• ๋Œ€๋ณ€ํ˜• ๋ชจ๋‘์—์„œ ์ผ์ •ํ•œ ์Œ์˜ ํฌ์•„์†ก๋น„๋ฅผ ๋‚˜ํƒ€๋ƒ„์„ 3์ฐจ์› ํ”„๋ฆฐํŒ…๊ณผ ๊ด‘ํ•™์  ๋ณ€ํ˜• ์ธก์ • ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ์†Œ์Œ์˜ ์ €๊ฐ์„ ์œ„ํ•ด ํ™œ์šฉ๋˜๋Š” ๊ฐ€์ฒญ ์ €์ฃผํŒŒ์ˆ˜ ์˜์—ญ๋Œ€์—์„œ์˜ ๋ฐด๋“œ๊ฐญ์ด ๊ทน๋Œ€ํ™”๋œ ๊ฒฉ์ž ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค.Abstract 1. Introduction 2. Isogeometric analysis of geometrically exact nonlinear structures 3. Isogeometric confinguration DSA of geometrically exact nonlinear structures 4. Numerical examples 5. Conclusions and future works A. Supplements to the geometrically exact Kirchhoff beam model B. Supplements to the geometrically exact shear-deformable beam model C. Supplements to the geometrically exact shear-deformable shell model D. Supplements to the invariant formulations E. Supplements to the geometric constraints in design optimization F. Supplements to the design of auxetic structures ์ดˆ๋กDocto

    Generative Mesh Modeling

    Get PDF
    Generative Modeling is an alternative approach for the description of three-dimensional shape. The basic idea is to represent a model not as usual by an agglomeration of geometric primitives (triangles, point clouds, NURBS patches), but by functions. The paradigm change from objects to operations allows for a procedural representation of procedural shapes, such as most man-made objects. Instead of storing only the result of a 3D construction, the construction process itself is stored in a model file. The generative approach opens truly new perspectives in many ways, among others also for 3D knowledge management. It permits for instance to resort to a repository of already solved modeling problems, in order to re-use this knowledge also in different, slightly varied situations. The construction knowledge can be collected in digital libraries containing domain-specific parametric modeling tools. A concrete realization of this approach is a new general description language for 3D models, the "Generative Modeling Language" GML. As a Turing-complete "shape programming language" it is a basis of existing, primitv based 3D model formats. Together with its Runtime engine the GML permits - to store highly complex 3D models in a compact form, - to evaluate the description within fractions of a second, - to adaptively tesselate and to interactively display the model, - and even to change the models high-level parameters at runtime.Die generative Modellierung ist ein alternativer Ansatz zur Beschreibung von dreidimensionaler Form. Zugrunde liegt die Idee, ein Modell nicht wie รผblich durch eine Ansammlung geometrischer Primitive (Dreiecke, Punkte, NURBS-Patches) zu beschreiben, sondern durch Funktionen. Der Paradigmenwechsel von Objekten zu Geometrie-erzeugenden Operationen ermรถglicht es, prozedurale Modelle auch prozedural zu reprรคsentieren. Statt das Resultat eines 3D-Konstruktionsprozesses zu speichern, kann so der Konstruktionsprozess selber reprรคsentiert werden. Der generative Ansatz erรถffnet unter anderem gรคnzlich neue Perspektiven fรผr das Wissensmanagement im 3D-Bereich. Er ermรถglicht etwa, auf einen Fundus bereits gelรถster Konstruktions-Aufgaben zurรผckzugreifen, um sie in รคhnlichen, aber leicht variierten Situationen wiederverwenden zu kรถnnen. Das Konstruktions-Wissen kann dazu in Form von Bibliotheken parametrisierter, Domรคnen-spezifischer Modellier-Werkzeuge gesammelt werden. Konkret wird dazu eine neue allgemeine Modell-Beschreibungs-Sprache vorgeschlagen, die "Generative Modeling Language" GML. Als Turing-mรคchtige "Programmiersprache fรผr Form" stellt sie eine echte Verallgemeinerung existierender Primitiv-basierter 3D-Modellformate dar. Zusammen mit ihrer Runtime-Engine erlaubt die GML, - hochkomplexe 3D-Objekte extrem kompakt zu beschreiben, - die Beschreibung innerhalb von Sekundenbruchteilen auszuwerten, - das Modell adaptiv darzustellen und interaktiv zu betrachten, - und die Modell-Parameter interaktiv zu verรคndern

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Reduced Models for Optimal Control, Shape Optimization and Inverse Problems in Haemodynamics

    Get PDF
    The objective of this thesis is to develop reduced models for the numerical solution of optimal control, shape optimization and inverse problems. In all these cases suitable functionals of state variables have to be minimized. State variables are solutions of a partial differential equation (PDE), representing a constraint for the minimization problem. The solution of these problems induce large computational costs due to the numerical discretization of PDEs and to iterative procedures usually required by numerical optimization (many-query context). In order to reduce the computational complexity, we take advantage of the reduced basis (RB) approximation for parametrized PDEs, once the state problem has been reformulated in parametrized form. This method enables a rapid and reliable approximation of parametrized PDEs by constructing low-dimensional, problem-specific approximation spaces. In case of PDEs defined over domains of variable shapes (e.g. in shape optimization problems) we need to introduce suitable, low-dimensional shape parametrization techniques in order to tackle the geometrical complexity. Free-Form Deformations and Radial-Basis Functions techniques have been analyzed and successfully applied with this aim. We analyze the reduced framework built by coupling these tools and apply it to the solution of optimal control and shape optimization problems. Robust optimization problems under uncertain conditions are also taken into consideration. Moreover, both deterministic and Bayesian frameworks are set in order to tackle inverse identification problems. As state equations, we consider steady viscous flow problems described by Stokes or Navier-Stokes equations, for which we provide a detailed analysis and construction of RB approximation and a posteriori error estimation. Several numerical test cases are also illustrated to show efficacy and reliability of RB approximations. We exploit this general reduced framework to solve some optimization and inverse problems arising in haemodynamics. More specifically, we focus on the optimal design of cardiovascular prostheses, such as bypass grafts, and on inverse identification of pathological conditions or flow/shape features in realistic parametrized geometries, such as carotid artery bifurcations

    Geodetic infrastructure of Serbia

    Get PDF
    Geodetic reference systems and their realization at the territory of Serbia have been created and maintained since the end of 19th century. Until mid-80s a series of reference geodetic networks were established: trigonometric networks in four orders, two levelling networks of high accuracybut also a series of gravimetric networks. In the following period of 20 years, there were not any organized worksaiming to maintenance of existing networks and creating new ones. In 1996, works started again on developing a new geodetic infrastructure in the form of realizing: a passive geodetic network, a network of permanent stations (AGROS โ€“ the active geodetic reference network of Serbia) as well as basic gravimetric networks. In this paperwork, a short review of works aiming to establish and use said networks is given but also a series of suggestions for a future development of geodetic infrastructure of Serbia

    Gas Turbines

    Get PDF
    This book is intended to provide valuable information for the analysis and design of various gas turbine engines for different applications. The target audience for this book is design, maintenance, materials, aerospace and mechanical engineers. The design and maintenance engineers in the gas turbine and aircraft industry will benefit immensely from the integration and system discussions in the book. The chapters are of high relevance and interest to manufacturers, researchers and academicians as well
    corecore