3 research outputs found

    Constraints for symmetry breaking in graph representation

    Get PDF
    Many complex combinatorial problems arising from a range of scientific applications (such as computer networks, mathematical chemistry and bioinformatics) involve searching for an undirected graph satisfying a given property. Since for any possible solution there can be a large number of isomorphic representations, these problems can quickly become intractable. One way to mitigate this problem is to eliminate as many isomorphic copies as possible by breaking symmetry during search - i.e. by introducing constraints that ensure that at least one representative graph is generated for each equivalence class, but not the entire class. The goal is to generate as few members of each class as possible - ideally exactly one: the symmetry break is said to be complete in this case. In this paper we introduce novel, effective and compact, symmetry breaking constraints for undirected graph search. While incomplete, these prove highly beneficial in pruning the search for a graph. We illustrate the application of symmetry breaking in graph representation to resolve several open instances in extremal graph theory. We also illustrate the application of our approach to graph edge coloring problems which exhibit additional symmetries due to the fact that the colors of the edges in any solution can be permuted

    Solving Graph Coloring Problems with Abstraction and Symmetry

    Get PDF
    This paper introduces a general methodology, based on abstraction and symmetry, that applies to solve hard graph edge-coloring problems and demonstrates its use to provide further evidence that the Ramsey number R(4,3,3)=30R(4,3,3)=30. The number R(4,3,3)R(4,3,3) is often presented as the unknown Ramsey number with the best chances of being found "soon". Yet, its precise value has remained unknown for more than 50 years. We illustrate our approach by showing that: (1) there are precisely 78{,}892 (3,3,3;13)(3,3,3;13) Ramsey colorings; and (2) if there exists a (4,3,3;30)(4,3,3;30) Ramsey coloring then it is (13,8,8) regular. Specifically each node has 13 edges in the first color, 8 in the second, and 8 in the third. We conjecture that these two results will help provide a proof that no (4,3,3;30)(4,3,3;30) Ramsey coloring exists implying that R(4,3,3)=30R(4,3,3)=30
    corecore