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Abstract. This paper introduces a general methodology, based on abstraction
and symmetry, that applies to solve hard graph edge-coloring problems and demon-
strates its use to provide further evidence that the Ramsey number R(4, 3, 3) =
30. The number R(4, 3, 3) is often presented as the unknown Ramsey number
with the best chances of being found “soon”. Yet, its precise value has remained
unknown for more than 50 years. We illustrate our approach by showing that: (1)
there are precisely 78,892 (3, 3, 3; 13) Ramsey colorings; and (2) if there exists
a (4, 3, 3; 30) Ramsey coloring then it is (13,8,8) regular. Specifically each node
has 13 edges in the first color, 8 in the second, and 8 in the third. We conjec-
ture that these two results will help provide a proof that no (4, 3, 3; 30) Ramsey
coloring exists implying that R(4, 3, 3) = 30.

1 Introduction

This paper introduces a general methodology that applies to solve graph edge-coloring
problems and demonstrates its application in the search for Ramsey numbers. These are
notoriously hard graph coloring problems that involve assigning k colors to the edges
of a complete graph. In particular, R(4, 3, 3) is the smallest number n such that any
coloring of the edges of the complete graph Kn in three colors will either contain a
K4 sub-graph in the first color, a K3 sub-graph in the second color, or a K3 sub-graph
in the third color. The precise value of this number has been sought for more than 50
years. Kalbfleisch [13] proved in 1966 that R(4, 3, 3) ≥ 30, Piwakowski [17] proved
in 1997 that R(4, 3, 3) ≤ 32, and one year later Piwakowski and Radziszowski [18]
proved that R(4, 3, 3) ≤ 31. We demonstrate how our methodology applies to provide
further evidence that R(4, 3, 3) = 30.

Solving hard search problems on graphs, and graph coloring problems in particular,
relies heavily on breaking symmetries in the search space. When searching for a graph,
the names of the vertices do not matter, and restricting the search modulo graph isomor-
phism is highly beneficial. When searching for a graph coloring, on top of graph isomor-
phism, solutions are typically closed under permutations of the colors: the names of the
colors do not matter and the term often used is “weak isomorphism” [18] (the equiva-
lence relation is weaker because both node names and edge colors do not matter). When

? Supported by the Israel Science Foundation, grant 182/13. Computational resources provided
by an IBM Shared University Award (Israel). The first three authors acknowledge the support
of the Frankel Center for Computer Science at Ben-Gurion University.

1



the problem is to compute the set of all solutions modulo (weak) isomorphism the task
is even more challenging. Often one first attempts to compute all the solutions of the
coloring problem, and to then apply one of the available graph isomorphism tools, such
as nauty [14] to select representatives of their equivalence classes modulo (weak) iso-
morphism. However, typically the number of solutions is so large that this approach is
doomed to fail even though the number of equivalence classes itself is much smaller.
The problem is that tools such as nauty apply after, and not during, search. To this
end, we first observe that the technique described in [5] for graph isomorphism applies
also to weak isomorphism, facilitating symmetry breaks during the search for solutions
to graph coloring problems. This form of symmetry breaking is an important compo-
nent in our methodology but on its own cannot provide solutions to hard graph coloring
problems.

When confronted with hard computational problems, a common strategy is to con-
sider approximations which focus on “abstract” solutions which characterize properties
of the actual “concrete” solutions. To this end, given a graph coloring problem with k
colors on n nodes, we introduce the notion of an n× k degree matrix in which each of
n rows describes the degrees of a corresponding node in the k colors. In case the graph
coloring problem is too hard to solve directly, we seek, possibly an over approximation
of, all of the degree matrices of its solutions. This enables an independent search for
solutions “per degree matrix” facilitating so called “embarrassingly parallel” search.

After laying the ground for a methodology based on symmetry breaking and ab-
straction we apply it to the problem of computing the Ramsey number R(4, 3, 3) which
reduces to determining if there exists a (4, 3, 3) coloring of the complete graphK30. We
first characterize the degrees of the nodes in each of the three colors in any such color-
ing, if one exists. To this end, we show that if there is such a graph coloring then, up to
swapping the colors two and three, all of its vertices have degrees in the three colors cor-
responding to the following triples: (13, 8, 8), (14, 8, 7), (15, 7, 7), (15, 8, 6), (16, 7, 6),
(16, 8, 5). Then, we demonstrate that any potential (4, 3, 3; 30) coloring with a node
with degrees (d1, d2, d3) in the corresponding colors must have three corresponding
embedded graphs G1, G2, G3 which are (3, 3, 3; d1), (4, 2, 3; d2), and (4, 3, 2; d3) col-
orings. For all of the cases except when the degrees are (13, 8, 8) these sets of colorings
are known and easy to compute. Based on this, we show using a SAT solver that there
can be no nodes with degrees (14, 8, 7), (15, 7, 7), (15, 8, 6), (16, 7, 6) or (16, 8, 5)
in any (4, 3, 3; 30) coloring. Thus, we prove that any such coloring would have to be
(13, 8, 8) regular, meaning that all nodes are of degree 13 in the first color and of degree
8 in the second and third color.

In order to apply the same proof technique for the case where the graph is (13, 8, 8)
regular we need to first compute the set of all (3, 3, 3; 13) colorings, modulo weak iso-
morphism. This set of graphs does not appear in previously published work. So, we
address the problem of computing the set of all (3, 3, 3; 13) Ramsey colorings, mod-
ulo weak isomorphism. This results in a set of 78,892 graphs. The set of (3, 3, 3; 13)
Ramsey colorings has recently been independently computed by at least three other
researchers: Richard Kramer, Ivan Livinsky, and Stanislaw Radziszowski [20].

Finally, we describe the ongoing computational effort to prove that there is no
(13, 8, 8) regular (4, 3, 3; 30) Ramsey coloring. Using the embedding approach, and
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given the 78,892 (3,3,3;13) colorings there are 78,892 × 3 × 3 = 710,028 instances
to consider. Over the period of 3 months we have verified using a SAT solver that an
equivalent of 557,451 of these are not satisfiable. When this ongoing effort completes
we will know if the value of R(4, 3, 3) is 30 or 31.

Throughout the paper we express graph coloring problems in terms of constraints
via a “mathematical language”. Our implementation uses the BEE, finite-domain con-
straint compiler [16], which solves constraints by encoding them to CNF and applying
an underlying SAT solver. The solver can be applied to find a single (first) solution
to a constraint, or to find all solutions for a constraint modulo a specified set of (inte-
ger and/or Boolean) variables. We have performed all computations using CryptoMini-
SAT [22] as the underlying solver. In some of the experiments we also report on results
using MiniSAT [8, 9], and Glucose [2, 3]. It is straightforward to configure BEE to work
with any of these. All computations were performed on a cluster with a total of 228 In-
tel E8400 cores clocked at 2 GHz each, able to run a total of 456 parallel threads. Each
of the cores in the cluster has computational power comparable to a core on a standard
desktop computer. Each SAT instance is run on a single thread.

The notion of a “degree matrix” arises in the literature with several different mean-
ings. Degree matrices with the same meaning as we use in in this paper are considered
in [4]. Gent and Smith [11], building on the work of Puget [19], study symmetries in
graph coloring problems and recognize the importance of breaking symmetries dur-
ing search. Meseguer and Torras [15] present a framework for exploiting symmetries
to heuristically guide a depth first search, and show promising results for (3, 3, 3;n)
Ramsey colorings with 14 ≤ n ≤ 17. Al-Jaam [1] proposes a hybrid meta-heuristic
algorithm for Ramsey coloring problems, combining tabu search and simulated anneal-
ing. While all of these approaches report promising results, to the best of our knowl-
edge, none of them have been successfully applied to solve open instances or improve
the known bounds on classical Ramsey numbers. Our approach focuses on symmetries
due to weak-isomorphism for graph coloring and models symmetry breaking in terms
of constraints introduced as part of the problem formulation. This idea, advocated by
Crawford et al. [7], has previously been explored in [5] (for graph isomorphism), and
in [19] (for graph coloring).

Graph coloring has many applications in computer science and mathematics, such
as scheduling, register allocation and synchronization, path coloring and sensor net-
works. Specifically, many finite domain CSP problems have a natural representation
as graph coloring problems. Our main contribution is a general methodology that ap-
plies to solve graph edge coloring problems. The application to potentially compute an
unknown Ramsey number is attractive, but the importance here is in that it shows the
utility of the methodology.

2 Preliminaries

An (r1, . . . , rk;n) Ramsey coloring is an assignment of one of k colors to each edge
in the complete graph Kn such that it does not contain a monochromatic complete
sub-graph Kri in color i for 1 ≤ i ≤ k. The set of all such colorings is denoted
R(r1, . . . , rk;n). The Ramsey number R(r1, . . . , rk) is the least n > 0 such that no
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(r1, . . . , rk;n) coloring exists. In the multicolor case (k > 2), the only known value
of a nontrivial Ramsey number is R(3, 3, 3) = 17. The value of R(4, 3, 3) is known
to be equal either to 30 or to 31. The numbers of (3, 3, 3;n) colorings are known for
14 ≤ n ≤ 16 but prior to this paper the number of colorings for n = 13 was unpub-
lished. Recently, the set of all (3, 3, 3; 13) colorings has also been computed by other
researchers [20], and the number 78,892 as reported also in this paper. More information
on recent results concerning Ramsey numbers can be found in the electronic dynamic
survey by Radziszowski [21].

In this paper, graphs are always simple, i.e. undirected and with no self loops. Colors
are associated with graph edges. The set of neighbors of a node x is denoted N(x)
and the set of neighbors by edges colored c, by Nc(x). For a natural number n denote
[n] = {1, 2, . . . , n}. A graph coloring, in k colors, is a pair (G, κ) consisting of a simple
graph G = ([n], E) and a mapping κ : E → [k]. When κ is clear from the context we
refer to G as the graph coloring. The sub-graph of G induced by the color c ∈ [k] is the
graphGc = ([n],

{
e ∈ E

∣∣κ(e) = c
}
). The sub-graph ofG on the c colored neighbors

of a node x is the projection of the labeled edges in G to Nc(x) × Nc(x) and denoted
Gcx. We typically represent G as an n× n adjacency matrix, A, defined such that

Ai,j =

{
κ(i, j) if (i, j) ∈ E
0 otherwise

If A is the adjacency matrix representing the graph G, then we denote the Boolean ad-
jacency matrix corresponding toGc asA[c]. We denote the ith row of a matrixA byAi.
The color-c degree of a node x in G is denoted degGc(x) and is equal to the degree of
x in the induced sub-graphGc. When clear from the context we write degc(x). LetG =
([n], E) and π be a permutation on [n]. Then π(G) = (V,

{
(π(x), π(y))

∣∣ (x, y) ∈ E }).
Permutations act on adjacency matrices in the natural way: If A is the adjacency matrix
of a graph G, then π(A) is the adjacency matrix of π(G) obtained by simultaneously
permuting with π both rows and columns of A.

ϕn,k
adj (A) =

∧
1≤q<r≤n

(
1 ≤ Aq,r ≤ k ∧ Aq,r = Ar,q ∧ Aq,q = 0

)
(1)

ϕn,c
K3

(A) =
∧

1≤q<r<s≤n

¬
(
Aq,r = Aq,s = Ar,s = c

)
(2)

ϕn,c
K4

(A) =
∧

1≤q<r<s<t≤n

¬
(
Aq,r = Aq,s = Aq,t = Ar,s = Ar,t = As,t = c

)
(3)

ϕ(3,3,3;n)(A) = ϕn,3
adj(A) ∧

∧
1≤c≤3

ϕn,c
K3

(A) (4)

ϕ(4,3,3;n)(A) = ϕn,3
adj(A) ∧

∧
1≤c≤2

ϕn,c
K3

(A) ∧ ϕn,3
K4

(A) (5)

Fig. 1. Graph labeling problems: Ramsey colorings (3, 3, 3;n) and (4, 3, 3;n)

4



A graph coloring problem is a formula ϕ(A) where A is an n× n adjacency matrix
of integer variables together with a set (conjunction) of constraints ϕ on these variables.
A solution is an assignment of integer values to the variables in A which satisfies ϕ and
determine both the graph edges and their colors. We often refer to a solution as an inte-
ger adjacency matrix and denote the set of solutions as sol(ϕ(A)). Figure 1 illustrates
the two graph coloring problems we focus on in this paper: (3, 3, 3;n) and (4, 3, 3;n)

Ramsey colorings. In Constraint (1), ϕn,kadj (A), states that the graph A has n vertices, is
k colored, and is simple (symmetric, and with no self loops). In Constraints (2) and (3),
ϕn,cK3

(A) and ϕn,cK4
(A) state that the n vertex graph A has no embedded sub-graph K3,

and respectively K4, in color c. In Constraints (4) and (5), the formulas state that a
graph A is a (3, 3, 3;n) and respectively a (4, 3, 3;n) Ramsey coloring.

For graph coloring problems, solutions are typically closed under permutations of
vertices and of colors. Restricting the search space for a solution modulo such per-
mutations is crucial when trying to solve hard graph coloring problems. It is standard
practice to formalize this in terms of graph (coloring) isomorphism.

Definition 1 ((weak) isomorphism of graph colorings). Let (G, κ1) and (H,κ2) be
k-color graph colorings with G = ([n], E1) and H = ([n], E2). We say that (G, κ1)
and (H,κ2) are weakly isomorphic, denoted (G, κ1) ≈ (H,κ2) if there exist permuta-
tions π : [n] → [n] and σ : [k] → [k] such that (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2

and κ1(u, v) = σ(κ2(π(u), π(v))). When σ is the identity permutation, (i.e. κ1(u, v) =
κ2(π(u), π(v))) we say that (G, κ1) and (H,κ2) are isomorphic. We denote such a
weak isomorphism thus: (G, κ1) ≈π,σ (H,κ2).

The following lemma emphasizes the importance of weak graph isomorphism as it
relates to Ramsey numbers. Many classic coloring problems exhibit the same property.

Lemma 1 (R(r1, r2, . . . , rk;n) is closed under ≈). Let (G, κ1) and (H,κ2) be
graph colorings in k colors such that (G, κ1) ≈π,σ (H,κ2). Then,

(G, κ1) ∈ R(r1, r2, . . . , rk;n) ⇐⇒ (H,κ2) ∈ R(σ(r1), σ(r2), . . . , σ(rk);n).

Proof. Assume that (G, κ1) ∈ R(r1, r2, . . . , rk;n) and in contradiction that (H,κ2) /∈
R(σ(r1), σ(r2), . . . , σ(rk);n). Let R denote a monochromatic clique of size rs in H
andR−1 the inverse ofR inG. From Definition 1, (u, v) ∈ R ⇐⇒ (π−1(u), π−1(v)) ∈
R−1 and κ2(u, v) = σ−1(κ1(u, v)). Consequently R−1 is a monochromatic clique of
size rs in (G, κ1) in contradiction to (G, κ1) ∈ R(r1, r2, . . . , rk;n).

Codish et al. introduce in [5] an approach to break symmetries due to graph iso-
morphism (without colors) during the search for a solution to general graph problems.
Their approach involves adding a symmetry breaking predicate sb∗` (A), as advocated
by Crawford et al. [7], on the variables of the adjacency matrix, A, when solving graph
problems. In [6] the authors show that the symmetry breaking approach of [5] holds
also for graph coloring problems where the adjacency matrix consists of integer vari-
ables (the proofs for the integer case are similar to those for the Boolean case).

Definition 2. [5]. Let A be an n× n adjacency matrix. Then, viewing the rows of A as
strings, sb∗` (A) =

∧{
Ai �{i,j} Aj

∣∣ i < j
}

where s �{i,j} s′ is the lexicographic
order on strings s and s′ after simultaneously omitting the elements at positions i and j.
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n #\≈ no sym break with sym break
#vars #clauses time #vars #clauses time #

17 0 408 2584 3042.10 4038 20734 0.15 0
16 2 360 2160 ∞ 3328 17000 0.14 6
15 2 315 1785 ∞ 2707 13745 0.37 66
14 115 273 1456 ∞ 2169 10936 259.56 24635
13 ? 234 1170 ∞ 1708 8540 ∞ ?

Table 1. The search for (3, 3, 3;n) Ramsey col-
orings with and without the symmetry break de-
fined in [6] (time in seconds with 24 hr. time-
out).

Table 1 illustrates the impact of
the symmetry breaking technique in-
troduced by Codish et al. in [6]
on the search for (3, 3, 3;n) Ram-
sey colorings. The column headed by
“#\≈” specifies the known number
of colorings modulo weak isomor-
phism [21]. The columns headed by
“#vars” and “#clauses” indicate, re-
spectively, the number of variables
and clauses in the corresponding CNF encodings of the coloring problems with and
without the symmetry breaking constraint. The columns headed by “time” indicate the
time (in seconds, on a single thread of the cluster) to find all colorings iterating with a
SAT solver. The timeout assumed here is 24 hours. The column headed by “#” specifies
the number of colorings found when solving with the symmetry break. These include
colorings which are weakly isomorphic, but far fewer than the hundreds of thousands
generated without the symmetry break (until the timeout).



0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
1 0 2 2 3 3 1 1 2 2 3 1 1 2 3 3
1 2 0 3 2 3 1 2 1 3 2 2 3 1 1 3
1 2 3 0 3 2 2 1 3 1 2 3 2 1 3 1
1 3 2 3 0 2 2 3 1 2 1 1 3 3 2 1
1 3 3 2 2 0 3 2 2 1 1 3 1 3 1 2
2 1 1 2 2 3 0 3 3 1 1 2 3 2 3 1
2 1 2 1 3 2 3 0 1 3 1 3 2 2 1 3
2 2 1 3 1 2 3 1 0 1 3 2 1 3 2 3
2 2 3 1 2 1 1 3 1 0 3 1 2 3 3 2
2 3 2 2 1 1 1 1 3 3 0 3 3 1 2 2
3 1 2 3 1 3 2 3 2 1 3 0 2 1 1 2
3 1 3 2 3 1 3 2 1 2 3 2 0 1 2 1
3 2 1 1 3 3 2 2 3 3 1 1 1 0 2 2
3 3 1 3 2 1 3 1 2 3 2 1 2 2 0 1
3 3 3 1 1 2 1 3 3 2 2 2 1 2 1 0





0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
1 0 2 2 3 3 1 1 2 2 3 1 1 2 3 3
1 2 0 3 2 3 2 3 1 1 2 1 2 3 1 3
1 2 3 0 3 2 1 2 1 3 2 2 3 1 3 1
1 3 2 3 0 2 3 2 2 1 1 3 1 3 2 1
1 3 3 2 2 0 2 1 3 2 1 3 3 1 1 2
2 1 2 1 3 2 0 3 3 1 1 2 3 2 1 3
2 1 3 2 2 1 3 0 1 1 3 3 2 2 3 1
2 2 1 1 2 3 3 1 0 3 1 2 1 3 3 2
2 2 1 3 1 2 1 1 3 0 3 3 2 1 2 3
2 3 2 2 1 1 1 3 1 3 0 1 3 3 2 2
3 1 1 2 3 3 2 3 2 3 1 0 2 1 2 1
3 1 2 3 1 3 3 2 1 2 3 2 0 1 1 2
3 2 3 1 3 1 2 2 3 1 3 1 1 0 2 2
3 3 1 3 2 1 1 3 3 2 2 2 1 2 0 1
3 3 3 1 1 2 3 1 2 3 2 1 2 2 1 0





5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5
5 5 5


Fig. 2. Two 16 × 16 non-isomorphic (3, 3, 3; 16) Ramsey colorings (left and middle) with their
common 16× 3 degree matrix (right).

Figure 2 depicts, on the left and in the middle, the two non-isomorphic colorings
(3, 3, 3; 16) represented as adjacency graphs in the form found using the approach of
Codish et al. [6]. Note the lexicographic order on the rows in both matrices. These
graphs are isomorphic to the two colorings reported in 1968 by Kalbfleish and Stan-
ton [12] where it is also proven that there are no others (modulo weak isomorphism).
The 16 × 3 degree matrix (right) describes the degrees of each node in each color
as defined below in Definition 3. The results reported in Table 1 also illustrate that
the approach of Codish et al. is not sufficiently powerful to compute the number of
(3, 3, 3; 13) colorings. Likewise, it does not facilitate the computation of R(4, 3, 3).

In the following we make use of the following results from [18].

Theorem 1. 30 ≤ R(4, 3, 3) ≤ 31 and, R(4, 3, 3) = 31 if and only if there exists
a (4, 3, 3; 30) coloring κ of K30 such that: (1) For every vertex v and i ∈ {2, 3},
5 ≤ degi(v) ≤ 8, and 13 ≤ deg1(v) ≤ 16. (2) Every edge in the third color has at
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least one endpoint v with deg3(v) = 13. (3) There are at least 25 vertices v for which
deg1(v) = 13, deg2(v) = deg3(v) = 8.

The following is a direct consequence of Theorem 1.

Corollary 1. If G is a (4, 3, 3; 30) coloring, and assuming without loss of generality
that the degree of color two is greater equal to the degree of color three, then every
vertex in G has degrees in the corresponding colors corresponding to one of the triplets
(13, 8, 8), (14, 8, 7), (15, 7, 7), (15, 8, 6), (16, 7, 6), (16, 8, 5).

Consider a vertex v in a (4, 3, 3;n) coloring and focus on the three subgraphs in-
duced by the neighbors of v in each of the three colors. The following states that these
must be corresponding Ramsey colorings.

Corollary 2. LetG is a (4, 3, 3;n) coloring and v be any vertex with degrees (d1, d2, d3)
in the corresponding colors. Then, d1 + d2 + d3 = n− 1 and G1

v , G2
v , and G3

v are re-
spectively (3, 3, 3; d1), (4, 2, 3; d2), and (4, 3, 2; d3) colorings.

Note that by definition a (4, 2, 3;n) coloring is a (4, 3;n) coloring in colors 1 and
3 and likewise a (4, 3, 2;n) coloring is a (4, 3;n) coloring in colors 1 and 2. For n ∈
{14, 15, 16}, the set of all (3, 3, 3;n) colorings modulo (weak) isomorphism are known
and consist respectively of 2, 2 and 15 colorings. Similarly, for n ∈ {5, 6, 7, 8} the set of
all (4, 3;n) colorings modulo (weak) isomorphism are known and consist respectively
of 9, 15, 9, and 3 Ramsey colorings.

3 Searching for Ramsey Colorings with Embeddings

In this section we apply a general approach where, when seeking a (r1, . . . , rk;n) Ram-
sey coloring one selects a “preferred” vertex, call it v1, and based on its degrees in each
of the k colors, embeds k subgraphs which are corresponding smaller colorings. Using
this approach, we apply Corollaries 1 and 2 to establish that a (4, 3, 3; 30) coloring, if
one exists, must be (13, 8, 8) regular. Specifically, all vertices have 13 neighbors by way
of edges in the first color and 8 each, by way of edges in the second and third colors.

Theorem 2. Any (4, 3, 3; 30) coloring, if one exists, is (13, 8, 8) regular.

Proof. By computation as described in the rest of this section.

We seek a (4, 3, 3; 30) coloring of K30, represented as a 30 × 30 adjacency matrix
A. We focus on the degrees, (d1, d2, d3) in each of the three colors, of the vertex v1,
corresponding to the first row in A, as prescribed by Corollary 1. For each such degree
triplet, except for the case (13, 8, 8), we take each of the known corresponding colorings
for the subgraphsG1

v1 ,G2
v1 , andG3

v1 and embed them inA. We then apply a SAT solver,
to complete the remaining cells in A to satisfy Constraint (5) of Figure 1. If the SAT
solver fails, then no such completion exists.

To illustrate the approach, consider the case where v1 has degrees (14, 8, 7) in the
three colors. Figure 3 details one of the embeddings corresponding to this case. The
first row of A specifies the colors of the edges of the 29 neighbors of v1. The symbol
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“ ” indicates an integer variable that takes a value between 1 and 3. The neighbors of
v1 in color 1 form a submatrix of A embedded in rows (and columns) 2–15 of the
matrix in the Figure. By Corollary 2 these are a (3, 3, 3; 14) Ramsey coloring and there
are 115 possible such colorings modulo weak isomorphism. The Figure details one
of them. Similarly, there are 3 possible subgraphs for the neighbors of v1 in color 2,
(the 3 (4, 2, 3; 8) colorings). In Figure 3, rows (and columns) 16–23 detail one such
coloring. Finally, there are 9 possible subgraphs for the neighbors of v1 in color 3, (the
9 (4, 3, 2; 7) colorings). In Figure 3, rows (and columns) 24–30 detail one such coloring.



0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
1 0 1 1 1 1 2 2 2 2 3 3 3 3 3
1 1 0 2 2 3 1 1 3 3 1 2 2 3 3
1 1 2 0 3 2 1 2 1 3 1 1 3 2 3
1 1 2 3 0 2 2 1 3 1 1 3 1 3 2
1 1 3 2 2 0 1 1 2 2 2 3 3 1 1
1 2 1 1 2 1 0 3 3 1 2 3 1 2 3
1 2 1 2 1 1 3 0 1 3 2 1 3 3 2
1 2 3 1 3 2 3 1 0 1 3 2 3 2 1
1 2 3 3 1 2 1 3 1 0 3 3 2 1 2
1 3 1 1 1 2 2 2 3 3 0 2 2 1 1
1 3 2 1 3 3 3 1 2 3 2 0 1 1 2
1 3 2 3 1 3 1 3 3 2 2 1 0 2 1
1 3 3 2 3 1 2 3 2 1 1 1 2 0 2
1 3 3 3 2 1 3 2 1 2 1 2 1 2 0
2 0 2 2 2 1 1 1 1
2 2 0 1 1 2 2 1 1
2 2 1 0 1 2 1 2 1
2 2 1 1 0 1 1 2 2
2 1 2 2 1 0 1 1 2
2 1 2 1 1 1 0 2 2
2 1 1 2 2 1 2 0 1
2 1 1 1 2 2 2 1 0
3 0 2 2 1 1 1 1
3 2 0 1 2 1 1 1
3 2 1 0 1 2 1 1
3 1 2 1 0 1 2 1
3 1 1 2 1 0 1 2
3 1 1 1 2 1 0 2
3 1 1 1 1 2 2 0


Fig. 3. One embedding in the search for a (4, 3, 3; 30) coloring when v1 has degrees (14, 8, 7).

To summarize, Figure 3 is a partial instantiated adjacency matrix in which the first
row determines the degrees of v1, in the three colors, and where 3 corresponding sub-
graphs are embedded. The uninstantiated values in the matrix must be completed to
obtain a solution that satisfies Constraint (5) of Figure 1. This can be determined using
a SAT solver. For the specific example in Figure 3, the CNF generated using our tool set
consists of 33,959 clauses, involves 5,318 Boolean variables, and is shown to be unsat-
isfiable in 52 seconds of computation time. For the case where v1 has degrees (14, 8, 7)
in the three colors this is one of 115× 3× 9 = 3105 instances that need to be checked.

Table 2 summarizes the experiment which proves Theorem 2. For each of the pos-
sible degrees of vertex 1 in a (4, 3, 3; 30) coloring as prescribed by Corollary 1, except
(13, 8, 8), and for each possible choice of colorings for the derived subgraphsG1

v1 ,G2
v1 ,

and G3
v1 , we apply a SAT solver to show that Constraint (5) of Figure 1 cannot be satis-

fied. The table details for each degree triple, the number of instances, their average size
(number of clauses and Boolean variables), and the average and total times to show that
the constraint is not satisfiable.

8



v1 degrees # instances # clauses (avg.) # vars (avg.) unsat (avg) unsat (total)
(16,8,5) 54 (2*3*9) 32432 5279 51 sec. 0.77 hrs.
(16,7,6) 270 (2*9*15) 32460 5233 420 sec. 31.50 hrs.
(15,8,6) 90 (2*3*15) 33607 5450 93 sec. 2.32 hrs.
(15,7,7) 162 (2*9*9) 33340 5326 1554 sec. 69.94 hrs.
(14,8,7) 3105 (115*3*9) 34069 5324 294 sec. 253.40 hrs.

Table 2. Proving that any (4, 3, 3; 30) Ramsey coloring is (13, 8, 8) regular (summary).

To gain confidence in our implementation, we illustrate its application to find a
(4, 3, 3; 29) coloring which is known to exist. This experiment involves some reverse
engineering. In 1966 Kalbfleisch [13] reported the existence of a circulant (3, 4, 4; 29)
coloring. Encoding Constraint (5) with n = 29, together with a constraint that states that
the adjacency matrix A is circulant, results in a CNF with 146,506 clauses and 8,394
variables. Using a SAT solver, we obtain a corresponding (4, 3, 3; 29) coloring in less
than two seconds of computation time. The solution is (12, 8, 8) regular and permuting
its first row to be of the form 01111111111112222222233333333 we extract from it
three corresponding subgraphs: G1

v1 , G2
v1 and G3

v1 which are respectively (3, 3, 3; 12),
(4, 2, 3; 8) and (4, 3, 2; 8) Ramsey colorings. An embedding of these three in a 29× 29
adjacency matrix is depicted as Figure 4 (the boldface elements).



0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 0 1 3 1 3 2 2 2 2 1 3 1 2 2 1 3 1 1 1 2 3 3 1 2 3 1 1 3
1 1 0 1 3 3 1 2 1 3 2 1 3 1 2 3 3 1 2 2 2 1 3 1 1 3 1 2 2
1 3 1 0 1 2 3 2 2 3 3 2 1 1 1 3 1 1 2 3 2 1 1 3 3 2 1 2 1
1 1 3 1 0 1 3 1 2 1 3 3 2 3 2 2 2 1 2 3 1 2 1 3 1 1 1 2 3
1 3 3 2 1 0 1 3 3 2 2 1 2 1 2 1 2 1 3 3 1 2 1 2 3 1 3 1 1
1 2 1 3 3 1 0 1 3 1 2 2 2 1 1 1 2 2 2 1 3 3 3 2 1 1 3 3 1
1 2 2 2 1 3 1 0 1 3 3 1 2 3 1 2 2 2 1 1 1 1 3 3 1 1 2 3 3
1 2 1 2 2 3 3 1 0 1 2 3 3 1 3 3 1 2 1 2 1 1 1 3 1 3 2 1 2
1 2 3 3 1 2 1 3 1 0 1 3 1 1 3 2 1 2 2 2 3 3 2 1 1 1 3 1 2
1 1 2 3 3 2 2 3 2 1 0 1 3 2 3 2 1 1 3 1 1 1 2 1 2 3 3 1 1
1 3 1 2 3 1 2 1 3 3 1 0 1 2 2 2 1 3 3 2 1 2 2 1 3 1 1 3 1
1 1 3 1 2 2 2 2 3 1 3 1 0 2 1 1 1 3 1 2 2 3 1 1 3 2 1 3 3
2 2 1 1 3 1 1 3 1 1 2 2 2 0 1 3 3 3 1 1 1 3 1 1 3 3 2 2 2
2 2 2 1 2 2 1 1 3 3 3 2 1 1 0 1 3 1 1 3 1 1 3 1 3 2 2 1 3
2 1 3 3 2 1 1 2 3 2 2 2 1 3 1 0 1 1 3 1 1 1 1 2 1 2 3 3 3
2 3 3 1 2 2 2 2 1 1 1 1 1 3 3 1 0 1 1 1 3 1 2 3 2 1 3 3 2
2 1 1 1 1 1 2 2 2 2 1 3 3 3 1 1 1 0 1 3 3 2 3 3 1 2 3 2 1
2 1 2 2 2 3 2 1 1 2 3 3 1 1 1 3 1 1 0 1 3 3 3 3 2 1 2 1 1
2 1 2 3 3 3 1 1 2 2 1 2 2 1 3 1 1 3 1 0 1 3 1 2 2 3 1 3 1
2 2 2 2 1 1 3 1 1 3 1 1 2 1 1 1 3 3 3 1 0 2 2 2 3 3 1 1 3
3 3 1 1 2 2 3 1 1 3 1 2 3 3 1 1 1 2 3 3 2 0 1 1 2 1 2 1 2
3 3 3 1 1 1 3 3 1 2 2 2 1 1 3 1 2 3 3 1 2 1 0 1 1 2 2 2 1
3 1 1 3 3 2 2 3 3 1 1 1 1 1 1 2 3 3 3 2 2 1 1 0 1 1 2 2 2
3 2 1 3 1 3 1 1 1 1 2 3 3 3 3 1 2 1 2 2 3 2 1 1 0 2 1 2 1
3 3 3 2 1 1 1 1 3 1 3 1 2 3 2 2 1 2 1 3 3 1 2 1 2 0 1 1 2
3 1 1 1 1 3 3 2 2 3 3 1 1 2 2 3 3 3 2 1 1 2 2 2 1 1 0 1 1
3 1 2 2 2 1 3 3 1 1 1 3 3 2 1 3 3 2 1 3 1 1 2 2 2 1 1 0 1
3 3 2 1 3 1 1 3 2 2 1 1 3 2 3 3 2 1 1 1 3 2 1 2 1 2 1 1 0


Fig. 4. Embedding (in boldface) and Solution (in gray text) for a (3, 3, 4; 29) Ramsey coloring

Applying a SAT solver to complete this embedding to a (4, 3, 3; 29) coloring satisfy-
ing Constraint (5) involves a CNF with 30,944 clauses and 4,736 variables and requires
under two hours of computation time. The obtained coloring is depicted as Figure 4.

9



Proving that R(4, 3, 3) = 30. To apply the embedding approach described in this sec-
tion to prove that there is no (4, 3, 3; 30) Ramsey coloring which is (13, 8, 8) regular
would require considering all (3, 3, 3; 13) colorings modulo weak isomorphism. Then,
showing unsatisfiability of the SAT instances derived from all of the corresponding em-
beddings would constitute a proof that R(4, 3, 3) = 30. We defer this discussion until
after Section 7 where we describe how we compute the set of all 78,892 (3, 3, 3; 13)
Ramsey colorings modulo weak isomorphism.

4 Degree Matrices for Graph Colorings

We introduce an abstraction on graph colorings defined in terms of degree matrices
and an equivalence relation on degree matrices. Our motivation is to solve graph color-
ing problems by first focusing on an over approximation of their degree matrices. The
equivalence relation on degree matrices enables us to break symmetries during search
when solving graph coloring problems. Intuitively, degree matrices are to graph edge-
colorings as degree sequences are to graphs.

Definition 3 (abstraction, degree matrix). Let A be a graph coloring on n vertices
with k colors. The degree matrix of A, denoted α(A) is an n × k matrix, M such that
Mi,j = degj(i) is the degree of vertex i in color j. For a set A of graph colorings we
denote α(A) =

{
α(A)

∣∣A ∈ A }.

A degree matrix, M , is said to represent the set of graphs weakly-isomorphic to
a graph with degrees as in M . We say that two degree matrices are equivalent if they
represent the same sets of graph colorings.

Definition 4 (concretization and equivalence). Let M and N be n × k degree ma-
trices. Then, γ(M) =

{
A
∣∣A ≈ A′, α(A′) =M

}
is the set of graph colorings rep-

resented by M and we say that M ≡ N ⇔ γ(M) = γ(N). For a set M of degree
matrices we denote γ(M) = ∪

{
γ(M)

∣∣M ∈M }
.

Due to properties of weak-isomorphism (vertices as well as colors can be reordered)
we can exchange both rows and columns of a degree matrix without changing the set
of graphs it represents. In our construction we assume that the rows and columns of a
degree matrix are sorted lexicographically. Observe also that the columns of a degree
matrix each form a graphic sequence (when sorted).

Definition 5 (lex sorted degree matrix). For an n × k degree matrix M we denote
by lex(M) the smallest matrix with rows and columns in the lexicographic order (non-
increasing) obtained by permuting rows and columns of M .

The following implies that for degree matrices we can assume without loss of gen-
erality that rows and columns are lexicographically ordered.

Theorem 3. If M , N are degree matrices then M ≡ N if and only if there exists
permutations π : [n] → [n] and σ : [k] → [k] such that, for 1 ≤ i ≤ n, 1 ≤ j ≤ k,
Mi,j = Nπ(i),σ(j).

10



Proof. Let M and N be degree matrices. Then,
M ≡ N Defn. 4⇐=⇒ γ(M) = γ(N)

Defn. 4⇐=⇒ ∀G≈H .G ∈ γ(M)↔ H ∈ γ(N)
Defn. 1⇐=⇒

∃π,σ.α(G)i,j = α(H)π(i),σ(j)
Defn. 3⇐=⇒Mi,j = Nπ(i),σ(j)

Corollary 3. M ≡ lex(M).

Proof. The result follows from Theorem 3 because M and lex(M) are related by per-
mutations of rows and columns.

Example 1. In Figure 2, the degree matrix (right) describes both graphs (left).

5 Solving Graph Coloring Problems with Degree Matrices

Let ϕ(A) be a graph coloring problem in k colors on an n × n adjacency matrix, A.
Assuming that A = sol(ϕ(A)) is too hard to compute, either because the number of
solutions is too large or because finding even a single solution is too hard, our strategy
is to first compute an over-approximationM of degree matrices such that γ(M) ⊇ A
and to then useM to guide the computation of A. We denote the set of solutions of the
graph coloring problem, ϕ(A), which have a given degree matrix, M , by solM (ϕ(A))
and we have

solM (ϕ(A)) = sol(ϕ(A) ∧ α(A)=M) (6)

Note that M 6∈ α(sol(ϕ(A)))⇒ solM (ϕ(A)) = ∅. Hence, forM⊇ α(sol(ϕ(A))),

sol(ϕ(A)) =
⋃

M∈M
solM (ϕ(A)) (7)

Equation (7) implies that, using any over-approximationM ⊇ α(sol(ϕ(A))), we can
compute the solutions to a graph coloring problem by computing the independent sets
solM (ϕ(A)) for each M ∈M. This facilitates the computation of sol(ϕ(A)) for three
reasons: (1) The problem is now broken into a set of independent sub-problems for
each M ∈ M which can be solved in parallel. (2) The computation of each individual
solM (ϕ(A)) is now directed using M , and (3) Symmetry breaking is facilitated.

There are two symmetry breaks when solving ϕ(A). First, we computeM to consist
of canonical degree matrices, sorted lexicographically by rows and by columns. Second,
we impose an additional symmetry breaking constraint sb∗` (A,M) as explained below.

Consider a computation of all solutions of the constraint in the right side of Equa-
tion (6). Consider a permutation π of the rows and columns of A, such that α(π(A)) =
α(A) = M . Then, both A and A′ are solutions and they are weakly isomorphic. The
following equation

solM (ϕ(A)) = sol(ϕ(A) ∧ (α(A)=M) ∧ sb∗` (A,M)) (8)

refines Equation (6) introducing a symmetry breaking constraint similar to the (parti-
tioned lexicographic) symmetry break predicate introduced by Codish et al. in [5] for
Boolean adjacency matrices.

sb∗` (A,M) =
∧
i<j

( (
Mi =Mj ⇒ Ai �{i,j} Aj

) )
(9)

11



where s �{i,j} s′ denotes the lexicographic order on strings s and s′ after simultane-
ously omitting the elements at positions i and j.

To justify that Equations (6) and (8) both compute solM (ϕ(A)), modulo weak iso-
morphism, we must show that whenever sb∗` (A,M) excludes a solution then there is
another weakly isomorphic solution that is not excluded. To this end, we introduce a
definition and then a theorem.

Definition 6 (degree matrix preserving permutation). Let A be an adjacency matrix
with a lexicographically ordered degree matrix α(A) =M . We say that permutation π
is degree matrix preserving for M and A if α(π(A)) =M .

Theorem 4 (correctness of sb∗` (A,M)). Let A be an adjacency matrix with a lexi-
cographically ordered degree matrix α(A) = M . Then, there exists a degree matrix
preserving permutation π such that α(π(A)) =M and sb∗` (π(A),M) holds.

Proof. If the rows of M are distinct, then the theorem holds with π the identity permu-
tation. Assume that some rows of M are equal. Denote by P the set of degree matrix
preserving permutations for M and A. Assume the premise and that no π ∈ P satis-
fies sb∗` (π(A),M). Let π ∈ P be such that π(A) = min

{
π′(A) ∈ P

∣∣π′ ∈ P } (in
the lexicographical order viewing matrices as strings). From the assumption, there exist
i < j such that Mi =Mj and π(A)i 6�{i,j} π(A)j . Hence there exists a minimal index
k /∈ {i, j} such that π(A)i,k > π(A)j,k. Let A′ be the matrix obtained by permuting
nodes i and j in π(A). Since Mi = Mj it follows that α(A′) = M . Thus there is
a π′ ∈ P such that π′(A) = A′. If k < i : for 1 ≤ l < k we have π(A)l = A′l.
Thus k is the first row for which A′ and π(A) differ. Permuting nodes i and j changes
row k by simply swapping elements π(A)k,i and π(A)k,j . Since π(A)k,i > π(A)k,j ,
clearly A′k ≺ π(A)k hence A′ ≺ π(A) which is a contradiction. Similarly if k > i the
same argument applies to show that i is the first row for which A′ and π(A) differ, thus
obtaining the same contradiction for row i.

The following corollary clarifies that if a solution A is eliminated when introducing
the symmetry break predicate sb∗` (A,α(A)) to a graph coloring problem then there
always remains an isomorphic solutionA′ which satisfies the predicate sb∗` (A′, α(A′)).

Corollary 4. Let A be an adjacency matrix. Then there exists A′ isomorphic to A such
that α(A′) is lex ordered and sb∗` (A′, α(A′)) holds.

Proof. LetM = α(A). From Corollary 3 we know thatM ≡ lex(M), thus there exists
A′′ isomorphic to A such that α(A′′) = lex(M). From Theorem 3 it follows that there
exists a degree matrix preserving permutation π such that α(π(A′′)) = lex(M) and
sb∗` (π(A′′), α(π(A′′))) holds. If A′ = π(A′′) then A′ is isomorphic to A, α(A′) is lex
ordered and sb∗` (A′, α(A′)) holds.

6 Computing Degree Matrices for R(3, 3, 3; 13)

This section describes how we compute a setM of degree matrices that approximate
those of the solutions of Constraint (4). We apply a strategy in which we mix SAT solv-
ing with brute-force enumeration as follows. The computation of the degree matrices is
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summarized in Table 3. In the first step, we compute bounds on the degrees of the nodes
in any R(3, 3, 3; 13) coloring.

Lemma 2. Let A be a R(3, 3, 3; 13) coloring then for every vertex x in A, and color
c ∈ {1, 2, 3}, 2 ≤ degc(x) ≤ 5.

Proof. By solving Constraint (4) together with sb∗` (A,M) seeking a graph with mini-
mal degree less than 2 or maximal degree greater than 5. The CNF encoding is of size
13672 clauses with 2748 Boolean variables and takes under 15 seconds to solve and
yields an UNSAT result which implies that such a graph does not exist.

In the second step, we enumerate the degree sequences with values within the
bounds specified by Lemma 2. Recall that the degree sequence of an undirected graph
is the non-increasing sequence of its vertex degrees. Not every non-increasing sequence
of integers corresponds to a degree sequence. A sequence that corresponds to a degree
sequence is said to be graphical. The number of degree sequences of graphs with 13
vertices is 836,315 (see Sequence number A004251 of The On-Line Encyclopedia of
Integer Sequences, published electronically athttp://oeis.org). However, when
the degrees are bound by Lemma 2 there are only 280.

Lemma 3. There are 280 degree sequences with values between 2 and 5.

Proof. By straightforward enumeration using the algorithm of Erdos and Gallai [10].

In the third step, we test each of the 280 degree sequences identified by Lemma 3
to determine how many of them might occur as the left column in a degree matrix.

Lemma 4. LetA be aR(3, 3, 3; 13) coloring and letM be the canonical form of α(A).
Then, (a) the left column ofM is one of the 280 degree sequences identified in Lemma 3;
and (b) there are only 80 degree sequences from the 280 which are the left column of
α(A) for some coloring A in R(3, 3, 3; 13).

Proof. By solving Constraint (4) with each degree sequence from Lemma 3 to test if
it is satisfiable. This involves 280 instances with average CNF size: 10861 clauses and
2215 Boolean variables. The total solving time is 375.76 hours and the hardest instance
required about 50 hours. These instances were solved in parallel on the cluster described
in Section 1.

In the fourth step we extend the 80 degree sequences identified in Lemma 4 to obtain
all possible degree matrices.

Lemma 5. Given the 80 degree sequences identified in Lemma 4 as potential left columns
of a degree matrix, there are 11,933 possible degree matrices.

Proof. By straightforward enumeration. The rows and columns are lex sorted, must
sum to 12, and the columns must be graphical (when sorted). We first compute all of
the degree matrices and then select the smallest representatives under permutations of
rows and columns. The computation requires a few seconds.
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Step Notes ComputationTimes CNF Size

1 compute degree bounds (Lemma 2) 12.52 sec. #Vars #Clauses
(1 instance, unsat) 2748 13672

2 enumerate 280 possible degree sequences (Lemma 3) Prolog, fast (seconds)

3 test degree sequences (Lemma 4) 16.32 hrs. #Vars #Clauses
(280 instances: 200 unsat, 80 sat) hardest: 1.34 hrs 1215 (avg) 7729(avg)

4 enumerate 11,933 degree matrices (Lemma 5) Prolog, fast (seconds)

5 test degree matrices (Lemma 6) 126.55 hrs. #Vars #Clauses
(11,933 instances: 10,934 unsat, 999 sat) hardest: 0.88 hrs. 1520 (avg) 7632 (avg)

Table 3. Computing the degree matrices forR(3, 3, 3; 13) step by step.

Step Notes Computation Times

1
compute all Ramsey (3, 3, 3; 13) MiniSAT CryptoMiniSAT Glucose
colorings per degree matrix total: 308.23 hr. total: 136.31 hr. total: 373.2 hr.
(999 instances, 129,188 solutions) hardest: 9.15 hr. hardest: 4.3 hr. hardest:17.67 hr.

2 reduce modulo≈. (78,892 solutions) nauty, fast (minutes)

Table 4. ComputingR(3, 3, 3; 13) step by step.

In the fifth step, we test each of the 11,933 degree matrices identified by Lemma 4
to determine how many of them are the abstraction of some R(3, 3, 3; 13) coloring.

Lemma 6. From the 11,933 degree matrices identified in Lemma 5, 999 are α(A) for
a coloring A in R(3, 3, 3; 13).

Proof. By solving Constraint (4) together with a given degree matrix to test if it is
satisfiable. This involves 11,933 instances with average CNF size: 7632 clauses and
1520 Boolean variables. The total solving time is 126.55 hours and the hardest instance
required 0.88 hours. These instances were solved in parallel on the cluster described in
Section 1.

7 Computing R(3, 3, 3; 13) from Degree Matrices

We describe the computation of the set of all (3, 3, 3; 13) colorings starting from the
3805 degree matrices identified in Section 6. Table 4 summarizes the two step experi-
ment reporting the computation on three different SAT solvers: MiniSAT [8, 9], Crypto-
MiniSAT [22], and Glucose [2, 3].
step 1: For each degree matrix we compute, using a SAT solver, all corresponding
solutions of Equation (8), where ϕ(A) is constraint (4) and M is one of the 999 degree
matrices identified in (Lemma 6). These instances were solved in parallel on the cluster
described in Section 1. This generates in total 129,188 (3, 3, 3; 13) Ramsey colorings.
Table 4 details the total solving time for these instances and the solving times for the
hardest instance for each SAT solver. The largest number of graphs generated by a
single instance is 3720.
step 2: The 129,188 (3, 3, 3; 13) colorings from step 1 are reduced modulo weak-
isomorphism using nauty3 [14]. This process results in a set with 78,892 graphs.

3 Note that nauty does not handle edge colored graphs and weak isomor-
phism directly. We applied an approach called k-layering described at https:
//computationalcombinatorics.wordpress.com/2012/09/20/
canonical-labelings-with-nauty.
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0 2 2 2 3 3 3 3
2 0 3 3 2 A 3 3
2 3 0 3 A B 2 3
2 3 3 0 3 B A 2
3 2 A 3 0 B C A
3 A B B B 0 A A
3 3 2 A C A 0 B
3 3 3 2 A A B 0


Fig. 5. Approximating the
three (2,3,4;8) colorings by
a single matrix with the con-
straints A, B, C ∈ {2, 3} and
A 6= B.

Does R(4,3,3) = 30? In order to prove that there
are no (4, 3, 3; 30) colorings with degrees (13, 8, 8) us-
ing the embedding approach, we need to check that
78,892 × 3 × 3 = 710,028 corresponding instances
are unsatisfiable. However, the three (2, 3, 4; 8) color-
ings are described by the single matrix with constraints
as portrayed in Figure 5 (which includes also a fourth
solution that is not a (2, 3, 4; 8) coloring) and similar for
the three (3, 2, 4; 8) colorings. So, in fact we have a total
of only 78,892 embedding instances to consider. Over
the past months, using the cluster described in Section 1,
we have determined 78,872 instances (99.97%) to be un-
satisfiable and found no satisfiable instance. The average size of an instance is 36,259
clauses with 5187 variables. The average solving time is 13.91 hours per instance.
Table 5 specifies, in the second column, the total number of instances (from the 78,872
solved so far) that can be shown unsatisfiable within the specified number of hours. The
third column indicates the increment in percentage (within 10 hours we solve 71.46%,
within 20 hours we solve an additional 12.11%, etc). The last row in the table indi-
cates that there are 5 instances (0.01%) which require between 1000 and 1600 hours
of computation. Only 20 instance remain to be solved. Each of these is running on a
single thread of the cluster. We expect these to finish within days, and conclude that
R(4, 3, 3) = 30.

8 Conclusion

time (hrs) # instances % instances (∆)
10 56,363 71.46 %
20 65,914 12.11 %

100 77,263 14.39 %
500 78,791 1.94 %

1000 78,867 0.09 %
1600 78,872 0.01 %

Table 5. Time required per in-
stance for proof that there are no
(4, 3, 3; 30) colorings with degrees
(13, 8, 8): 78,872 \ 78,892 in-
stances.

We have applied SAT solving techniques to show
that any (4, 3, 3; 30) Ramsey coloring must be
(13, 8, 8) regular. In order to apply the same tech-
nique to show that there is no (13, 8, 8) regular
coloring we would need to make use of the set
of all (3, 3, 3; 13) colorings. We have computed
this set modulo weak isomorphism. To this end
we applied a technique involving abstraction and
symmetry breaking to reduce the redundancies
in the number of isomorphic solutions obtained
when applying the SAT solver. Ongoing com-
putation is proceeding to determine the precise
value of R(4, 3, 3).
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