7 research outputs found

    The Reach-and-Evolve Algorithm for Reachability Analysis of Nonlinear Dynamical Systems

    Get PDF
    This paper introduces a new algorithm dedicated to the rigorous reachability analysis of nonlinear dynamical systems. The algorithm is initially presented in the context of discrete time dynamical systems, and then extended to continuous time dynamical systems driven by ODEs. In continuous time, this algorithm is called the Reach and Evolve algorithm. The Reach and Evolve algorithm is based on interval analysis and a rigorous discretization of space and time. Promising numerical experiments are presented

    Encoding inductive invariants as barrier certificates: synthesis via difference-of-convex programming

    Full text link
    A barrier certificate often serves as an inductive invariant that isolates an unsafe region from the reachable set of states, and hence is widely used in proving safety of hybrid systems possibly over an infinite time horizon. We present a novel condition on barrier certificates, termed the invariant barrier-certificate condition, that witnesses unbounded-time safety of differential dynamical systems. The proposed condition is the weakest possible one to attain inductive invariance. We show that discharging the invariant barrier-certificate condition -- thereby synthesizing invariant barrier certificates -- can be encoded as solving an optimization problem subject to bilinear matrix inequalities (BMIs). We further propose a synthesis algorithm based on difference-of-convex programming, which approaches a local optimum of the BMI problem via solving a series of convex optimization problems. This algorithm is incorporated in a branch-and-bound framework that searches for the global optimum in a divide-and-conquer fashion. We present a weak completeness result of our method, namely, a barrier certificate is guaranteed to be found (under some mild assumptions) whenever there exists an inductive invariant (in the form of a given template) that suffices to certify safety of the system. Experimental results on benchmarks demonstrate the effectiveness and efficiency of our approach.Comment: To be published in Inf. Comput. arXiv admin note: substantial text overlap with arXiv:2105.1431

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Constraints for Continuous Reachability in the Verification of Hybrid Systems

    No full text
    The method for verification of hybrid systems by constraint propagation based abstraction refinement that we introduced in an earlier paper is based on an over-approximation of continuous reachability information of ordinary differential equations using constraints that do not contain differentiation symbols. The method uses an interval constraint propagation based solver to solve these constraints. This has the advantage that—without complicated algorithmic changes—the method can be improved by just changing these constraints. In this paper, we discuss various possibilities of such changes, we prove some properties about the amount of over-approximations introduced by the new constraints, and provide some timings that document the resulting improvement

    Constraints for Continuous Reachability in the Verification of Hybrid Systems

    No full text
    The method for verification of hybrid systems by constraint propagation based abstraction refinement that we introduced in an earlier paper is based on an over-approximation of continuous reachability information of ordinary differential equations using constraints that do not contain differentiation symbols. The method uses an interval constraint propagation based solver to solve these constraints. This has the advantage that—without complicated algorithmic changes—the method can be improved by just changing these constraints. In this paper, we discuss various possibilities of such changes, we prove some properties about the amount of over-approximations introduced by the new constraints, and provide some timings that document the resulting improvement
    corecore