233,677 research outputs found
Exhaustive and Efficient Constraint Propagation: A Semi-Supervised Learning Perspective and Its Applications
This paper presents a novel pairwise constraint propagation approach by
decomposing the challenging constraint propagation problem into a set of
independent semi-supervised learning subproblems which can be solved in
quadratic time using label propagation based on k-nearest neighbor graphs.
Considering that this time cost is proportional to the number of all possible
pairwise constraints, our approach actually provides an efficient solution for
exhaustively propagating pairwise constraints throughout the entire dataset.
The resulting exhaustive set of propagated pairwise constraints are further
used to adjust the similarity matrix for constrained spectral clustering. Other
than the traditional constraint propagation on single-source data, our approach
is also extended to more challenging constraint propagation on multi-source
data where each pairwise constraint is defined over a pair of data points from
different sources. This multi-source constraint propagation has an important
application to cross-modal multimedia retrieval. Extensive results have shown
the superior performance of our approach.Comment: The short version of this paper appears as oral paper in ECCV 201
A CHR-based Implementation of Known Arc-Consistency
In classical CLP(FD) systems, domains of variables are completely known at
the beginning of the constraint propagation process. However, in systems
interacting with an external environment, acquiring the whole domains of
variables before the beginning of constraint propagation may cause waste of
computation time, or even obsolescence of the acquired data at the time of use.
For such cases, the Interactive Constraint Satisfaction Problem (ICSP) model
has been proposed as an extension of the CSP model, to make it possible to
start constraint propagation even when domains are not fully known, performing
acquisition of domain elements only when necessary, and without the need for
restarting the propagation after every acquisition.
In this paper, we show how a solver for the two sorted CLP language, defined
in previous work, to express ICSPs, has been implemented in the Constraint
Handling Rules (CHR) language, a declarative language particularly suitable for
high level implementation of constraint solvers.Comment: 22 pages, 2 figures, 1 table To appear in Theory and Practice of
Logic Programming (TPLP
- …