234,977 research outputs found

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Symmetry within Solutions

    Full text link
    We define the concept of an internal symmetry. This is a symmety within a solution of a constraint satisfaction problem. We compare this to solution symmetry, which is a mapping between different solutions of the same problem. We argue that we may be able to exploit both types of symmetry when finding solutions. We illustrate the potential of exploiting internal symmetries on two benchmark domains: Van der Waerden numbers and graceful graphs. By identifying internal symmetries we are able to extend the state of the art in both cases.Comment: AAAI 2010, Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligenc

    Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional

    Full text link
    In this paper, we propose a new numerical method to compute the ground state solution of trapped interacting Bose-Einstein condensation (BEC) at zero or very low temperature by directly minimizing the energy functional via finite element approximation. As preparatory steps we begin with the 3d Gross-Pitaevskii equation (GPE), scale it to get a three-parameter model and show how to reduce it to 2d and 1d GPEs. The ground state solution is formulated by minimizing the energy functional under a constraint, which is discretized by the finite element method. The finite element approximation for 1d, 2d with radial symmetry and 3d with spherical symmetry and cylindrical symmetry are presented in detail and approximate ground state solutions, which are used as initial guess in our practical numerical computation of the minimization problem, of the GPE in two extreme regimes: very weak interactions and strong repulsive interactions are provided. Numerical results in 1d, 2d with radial symmetry and 3d with spherical symmetry and cylindrical symmetry for atoms ranging up to millions in the condensation are reported to demonstrate the novel numerical method. Furthermore, comparisons between the ground state solutions and their Thomas-Fermi approximations are also reported. Extension of the numerical method to compute the excited states of GPE is also presented.Comment: 33 pages, 22 figure

    Symmetry Properties of a Generalized Korteweg-de Vires Equation and some Explicit Solutions

    Get PDF
    The symmetry group method is applied to a generalized Korteweg-de Vries equation and several classes of group invarint solution for it are obtained by means of this technique. Polynomial, trigonometric and elliptic function solutions can be calculated. It is shown that this generalized equation can be reduced to a first-order equation under a particular second-order differential constraint which resembles a Schrodinger equation. For a particular instance in which the constraint is satisfied, the generalized equation is reduced to a quadrature. A condition which ensures that the reciprocal of a solution is also a solution is given, and a first integral to this constraint is found

    Spontaneous Symmetry Breaking in Discretized Light-Cone Quantization

    Full text link
    Spontaneous symmetry breaking of the light-front Gross-Neveu model is studied in the framework of the discretized light-cone quantization. Introducing a scalar auxiliary field and adding its kinetic term, we obtain a constraint on the longitudinal zero mode of the scalar field. This zero-mode constraint is solved by using the 1/N1/N expansion. In the leading order, we find a nontrivial solution which gives the fermion nonzero mass and thus breaks the discrete symmetry of the model. It is essential for obtaining the nontrivial solution to treat adequately an infrared divergence which appears in the continuum limit. We also discuss the constituent picture of the model. The Fock vacuum is trivial and an eigenstate of the light-cone Hamiltonian. In the large NN limit, the Hamiltonian consists of the kinetic term of the fermion with dressed mass and the interaction term of these fermions.Comment: 25 pages, Latex, no figures, to be published in Progress of Theoretical Physic

    Covariant gravity with Lagrange multiplier constraint

    Full text link
    We review on the models of gravity with a constraint by the Lagrange multiplier field. The constraint breaks general covariance or Lorentz symmetry in the ultraviolet region. We report on the F(R)F(R) gravity model with the constraint and the proposal of the covariant (power-counting) renormalized gravity model by using the constraint and scalar projectors. We will show that the model admits flat space solution, its gauge-fixing formulation is fully developed, and the only propagating mode is (higher derivative) graviton, while scalar and vector modes do not propagate. The preliminary study of FRW cosmology indicates to the possibility of inflationary universe solution is also given.Comment: 10 pages, to appear in the Proceedings of the QFEXT11 Benasque Conferenc
    corecore