46,302 research outputs found

    A close examination of cosmic microwave background mirror-parity after Planck

    Full text link
    Previous claims of significant evidence for mirror-parity in the large-scale cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP) experiment have been recently echoed in the first study of isotropy and statistics of CMB data from Planck. We revisit these claims with a careful analysis of the latest data available. We construct statistical estimators in both harmonic and pixel space, test them on simulated data with and without mirror-parity symmetry, apply different Galactic masks, and study the dependence of the results on arbitrary choices of free parameters. We confirm that the data exhibit evidence for odd mirror-parity at a significance which reaches as high as ~ 99 per cent C.L., under some circumstances. However, given the inherent biases in the pixel-based statistic and the dependence of both pixel and harmonic space statistics on the particular form of Galactic masking and other a-posteriori choices, we conclude that these results are not in significant tension with the predictions of the concordance cosmological model.Comment: 9 pages, 5 figures, minor changes, as published in MNRA

    Bounds on higher-order Lorentz-violating photon sector coefficients from an asymmetric optical ring resonator experiment

    Full text link
    Optical resonators provide a powerful tool for testing aspects of Lorentz invariance. Here, we present a reanalysis of an experiment where a path asymmetry was created in an optical ring resonator by introducing a dielectric prism in one arm. The frequency difference of the two fundamental counter-propagating modes was then recorded as the apparatus was orientation-modulated in the laboratory. By assuming that the minimal Standard-Model Extension coefficients vanish we are able to place bounds on higher-order parity-odd Lorentz-violating coefficients of the Standard-Model Extension. The results presented in this work set the first constraints on two previously unbounded linear combinations of d=8 parity-odd nonbirefringent nondispersive coefficients of the photon sector.Comment: 6 pages, 4 figures, 3 tables, accepted for publication in Physics Letters

    Testing the Standard Model by precision measurement of the weak charges of quarks

    Get PDF
    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the Standard Model. Consequently, this result improves the lower-bound on the scale of relevant new physics to ~1 TeV.Comment: 4 pages, 3 figures; v2: further details on extraction of electroweak parameters, new figur

    Two approaches to testing general relativity in the strong-field regime

    Full text link
    Observations of compact objects in the electromagnetic spectrum and the detection of gravitational waves from them can lead to quantitative tests of the theory of general relativity in the strong-field regime following two very different approaches. In the first approach, the general relativistic field equations are modified at a fundamental level and the magnitudes of the potential deviations are constrained by comparison with observations. In the second approach, the exterior spacetimes of compact objects are parametrized in a phenomenological way, the various parameters are measured observationally, and the results are finally compared against the general relativistic predictions. In this article, I discuss the current status of both approaches, focusing on the lessons learned from a large number of recent investigations.Comment: To appear in the proceedings of the conference New Developments in Gravit

    A framework for testing isotropy with the cosmic microwave background

    Get PDF
    We present a new framework for testing the isotropy of the Universe using cosmic microwave background data, building on the nested-sampling ANICOSMO code. Uniquely, we are able to constrain the scalar, vector and tensor degrees of freedom alike; previous studies only considered the vector mode (linked to vorticity). We employ Bianchi type VIIh_h cosmologies to model the anisotropic Universe, from which other types may be obtained by taking suitable limits. In a separate development, we improve the statistical analysis by including the effect of Bianchi power in the high-ℓ\ell, as well as the low-ℓ\ell, likelihood. To understand the effect of all these changes, we apply our new techniques to WMAP data. We find no evidence for anisotropy, constraining shear in the vector mode to (σV/H)0<1.7×10−10(\sigma_V/H)_0 < 1.7 \times 10^{-10} (95% CL). For the first time, we place limits on the tensor mode; unlike other modes, the tensor shear can grow from a near-isotropic early Universe. The limit on this type of shear is (σT,reg/H)0<2.4×10−7(\sigma_{T,\rm reg}/H)_0 < 2.4 \times 10^{-7} (95% CL).Comment: 11 pages, 6 figures, v3: minor modifications to match version accepted by MNRA

    A study of redundancy management strategy for tetrad strap-down inertial systems

    Get PDF
    Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction
    • …
    corecore