4 research outputs found

    CCQ: Efficient Local Planning Using Connection Collision Query

    Full text link
    Abstract We introduce a novel proximity query, called connection collision query (CCQ), and use it for efficient and exact local planning in sampling-based motion planners. Given two collision-free configurations, CCQ checks whether these con-figurations can be connected by a given continuous path that either lies completely in the free space or penetrates any obstacle by at most ε, a given threshold. Our approach is general, robust, and can handle different continuous path formulations. We have integrated the CCQ algorithm with sampling-based motion planners and can perform reliable local planning queries with little performance degradation, as compared to prior methods. Moreover, the CCQ-based exact local planner is about an order of magnitude faster than prior exact local planning algorithms.

    Efficient motion planning using generalized penetration depth computation

    Get PDF
    Motion planning is a fundamental problem in robotics and also arises in other applications including virtual prototyping, navigation, animation and computational structural biology. It has been extensively studied for more than three decades, though most practical algorithms are based on randomized sampling. In this dissertation, we address two main issues that arise with respect to these algorithms: (1) there are no good practical approaches to check for path non-existence even for low degree-of-freedom (DOF) robots; (2) the performance of sampling-based planners can degrade if the free space of a robot has narrow passages. In order to develop effective algorithms to deal with these problems, we use the concept of penetration depth (PD) computation. By quantifying the extent of the intersection between overlapping models (e.g. a robot and an obstacle), PD can provide a distance measure for the configuration space obstacle (C-obstacle). We extend the prior notion of translational PD to generalized PD, which takes into account translational as well as rotational motion to separate two overlapping models. Moreover, we formulate generalized PD computation based on appropriate model-dependent metrics and present two algorithms based on convex decomposition and local optimization. We highlight the efficiency and robustness of our PD algorithms on many complex 3D models. Based on generalized PD computation, we present the first set of practical algorithms for low DOF complete motion planning. Moreover, we use generalized PD computation to develop a retraction-based planner to effectively generate samples in narrow passages for rigid robots. The effectiveness of the resulting planner is shown by alpha puzzle benchmark and part disassembly benchmarks in virtual prototyping

    Constrained Motion Interpolation with Distance Constraints

    No full text
    Abstract: We present a novel constraint-based motion interpolation algorithm to improve the performance of local planners in sample-based motion planning. Given two free-space configurations of a robot, our algorithm computes a one-dimensional trajectory subject to distance constraints between the closest features of the robot and the obstacles. We derive simple and closed form solutions to compute a path that guarantees no collisions between these closest features. The resulting local planner is fast and can improve the performance of sample-based planners with no changes to the underlying sampling strategy. In practice, we observe speedups on benchmarks for rigid robots with narrow passages.
    corecore