Efficient motion planning using generalized penetration depth computation

Abstract

Motion planning is a fundamental problem in robotics and also arises in other applications including virtual prototyping, navigation, animation and computational structural biology. It has been extensively studied for more than three decades, though most practical algorithms are based on randomized sampling. In this dissertation, we address two main issues that arise with respect to these algorithms: (1) there are no good practical approaches to check for path non-existence even for low degree-of-freedom (DOF) robots; (2) the performance of sampling-based planners can degrade if the free space of a robot has narrow passages. In order to develop effective algorithms to deal with these problems, we use the concept of penetration depth (PD) computation. By quantifying the extent of the intersection between overlapping models (e.g. a robot and an obstacle), PD can provide a distance measure for the configuration space obstacle (C-obstacle). We extend the prior notion of translational PD to generalized PD, which takes into account translational as well as rotational motion to separate two overlapping models. Moreover, we formulate generalized PD computation based on appropriate model-dependent metrics and present two algorithms based on convex decomposition and local optimization. We highlight the efficiency and robustness of our PD algorithms on many complex 3D models. Based on generalized PD computation, we present the first set of practical algorithms for low DOF complete motion planning. Moreover, we use generalized PD computation to develop a retraction-based planner to effectively generate samples in narrow passages for rigid robots. The effectiveness of the resulting planner is shown by alpha puzzle benchmark and part disassembly benchmarks in virtual prototyping

    Similar works