182,273 research outputs found

    On morphological hierarchical representations for image processing and spatial data clustering

    Full text link
    Hierarchical data representations in the context of classi cation and data clustering were put forward during the fties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in the framework of mathematical morphology: constrained connectivity and ultrametric watersheds. Constrained connectivity can be viewed as a way to constrain an initial hierarchy in such a way that a set of desired constraints are satis ed. The framework of ultrametric watersheds provides a generic scheme for computing any hierarchical connected clustering, in particular when such a hierarchy is constrained. The suitability of this framework for solving practical problems is illustrated with applications in remote sensing

    Spatially-constrained clustering of ecological networks

    Full text link
    Spatial ecological networks are widely used to model interactions between georeferenced biological entities (e.g., populations or communities). The analysis of such data often leads to a two-step approach where groups containing similar biological entities are firstly identified and the spatial information is used afterwards to improve the ecological interpretation. We develop an integrative approach to retrieve groups of nodes that are geographically close and ecologically similar. Our model-based spatially-constrained method embeds the geographical information within a regularization framework by adding some constraints to the maximum likelihood estimation of parameters. A simulation study and the analysis of real data demonstrate that our approach is able to detect complex spatial patterns that are ecologically meaningful. The model-based framework allows us to consider external information (e.g., geographic proximities, covariates) in the analysis of ecological networks and appears to be an appealing alternative to consider such data

    Co-Clustering Network-Constrained Trajectory Data

    Full text link
    Recently, clustering moving object trajectories kept gaining interest from both the data mining and machine learning communities. This problem, however, was studied mainly and extensively in the setting where moving objects can move freely on the euclidean space. In this paper, we study the problem of clustering trajectories of vehicles whose movement is restricted by the underlying road network. We model relations between these trajectories and road segments as a bipartite graph and we try to cluster its vertices. We demonstrate our approaches on synthetic data and show how it could be useful in inferring knowledge about the flow dynamics and the behavior of the drivers using the road network
    • …
    corecore