381 research outputs found
On Optimal TCM Encoders
An asymptotically optimal trellis-coded modulation (TCM) encoder requires the
joint design of the encoder and the binary labeling of the constellation. Since
analytical approaches are unknown, the only available solution is to perform an
exhaustive search over the encoder and the labeling. For large constellation
sizes and/or many encoder states, however, an exhaustive search is unfeasible.
Traditional TCM designs overcome this problem by using a labeling that follows
the set-partitioning principle and by performing an exhaustive search over the
encoders. In this paper we study binary labelings for TCM and show how they can
be grouped into classes, which considerably reduces the search space in a joint
design. For 8-ary constellations, the number of different binary labelings that
must be tested is reduced from 8!=40320 to 240. For the particular case of an
8-ary pulse amplitude modulation constellation, this number is further reduced
to 120 and for 8-ary phase shift keying to only 30. An algorithm to generate
one labeling in each class is also introduced. Asymptotically optimal TCM
encoders are tabulated which are up to 0.3 dB better than the previously best
known encoders
On the Asymptotic Performance of Bit-Wise Decoders for Coded Modulation
Two decoder structures for coded modulation over the Gaussian and flat fading
channels are studied: the maximum likelihood symbol-wise decoder, and the
(suboptimal) bit-wise decoder based on the bit-interleaved coded modulation
paradigm. We consider a 16-ary quadrature amplitude constellation labeled by a
Gray labeling. It is shown that the asymptotic loss in terms of pairwise error
probability, for any two codewords caused by the bit-wise decoder, is bounded
by 1.25 dB. The analysis also shows that for the Gaussian channel the
asymptotic loss is zero for a wide range of linear codes, including all
rate-1/2 convolutional codes
Multilevel Coding Schemes for Compute-and-Forward
We investigate techniques for designing modulation/coding schemes for the
wireless two-way relaying channel. The relay is assumed to have perfect channel
state information, but the transmitters are assumed to have no channel state
information. We consider physical layer network coding based on multilevel
coding techniques. Our multilevel coding framework is inspired by the
compute-and-forward relaying protocol. Indeed, we show that the framework
developed here naturally facilitates decoding of linear combinations of
codewords for forwarding by the relay node. We develop our framework with
general modulation formats in mind, but numerical results are presented for the
case where each node transmits using the QPSK constellation with gray labeling.
We focus our discussion on the rates at which the relay may reliably decode
linear combinations of codewords transmitted from the end nodes
Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems
The FEC limit paradigm is the prevalent practice for designing optical
communication systems to attain a certain bit-error rate (BER) without forward
error correction (FEC). This practice assumes that there is an FEC code that
will reduce the BER after decoding to the desired level. In this paper, we
challenge this practice and show that the concept of a channel-independent FEC
limit is invalid for soft-decision bit-wise decoding. It is shown that for low
code rates and high order modulation formats, the use of the soft FEC limit
paradigm can underestimate the spectral efficiencies by up to 20%. A better
predictor for the BER after decoding is the generalized mutual information,
which is shown to give consistent post-FEC BER predictions across different
channel conditions and modulation formats. Extensive optical full-field
simulations and experiments are carried out in both the linear and nonlinear
transmission regimes to confirm the theoretical analysis
Golden Space-Time Trellis Coded Modulation
In this paper, we present a concatenated coding scheme for a high rate
multiple-input multiple-output (MIMO) system over slow fading
channels. The inner code is the Golden code \cite{Golden05} and the outer code
is a trellis code. Set partitioning of the Golden code is designed specifically
to increase the minimum determinant. The branches of the outer trellis code are
labeled with these partitions. Viterbi algorithm is applied for trellis
decoding. In order to compute the branch metrics a lattice sphere decoder is
used. The general framework for code optimization is given. The performance of
the proposed concatenated scheme is evaluated by simulation. It is shown that
the proposed scheme achieves significant performance gains over uncoded Golden
code.Comment: 33 pages, 13 figure
Signal Shaping for BICM at Low SNR
The mutual information of bit-interleaved coded modulation (BICM) systems,
sometimes called the BICM capacity, is investigated at low signal-to-noise
ratio (SNR), i.e., in the wideband regime. A new linear transform that depends
on bits' probabilities is introduced. This transform is used to prove the
asymptotical equivalence between certain BICM systems with uniform and
nonuniform input distributions. Using known results for BICM systems with a
uniform input distribution, we completely characterize the combinations of
input alphabet, input distribution, and binary labeling that achieve the
Shannon limit -1.59 dB. The main conclusion is that a BICM system achieves the
Shannon limit at low SNR if and only if it can be represented as a zero-mean
linear projection of a hypercube, which is the same condition as for uniform
input distributions. Hence, probabilistic shaping offers no extra degrees of
freedom to optimize the low-SNR mutual information of BICM systems, in addition
to what is provided by geometrical shaping. These analytical conclusions are
confirmed by numerical results, which also show that for a fixed input
alphabet, probabilistic shaping of BICM can improve the mutual information in
the low and medium SNR range over any coded modulation system with a uniform
input distribution
Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization
In this paper, probabilistic shaping is numerically and experimentally
investigated for increasing the transmission reach of wavelength division
multiplexed (WDM) optical communication system employing quadrature amplitude
modulation (QAM). An optimized probability mass function (PMF) of the QAM
symbols is first found from a modified Blahut-Arimoto algorithm for the optical
channel. A turbo coded bit interleaved coded modulation system is then applied,
which relies on many-to-one labeling to achieve the desired PMF, thereby
achieving shaping gain. Pilot symbols at rate at most 2% are used for
synchronization and equalization, making it possible to receive input
constellations as large as 1024QAM. The system is evaluated experimentally on a
10 GBaud, 5 channels WDM setup. The maximum system reach is increased w.r.t.
standard 1024QAM by 20% at input data rate of 4.65 bits/symbol and up to 75% at
5.46 bits/symbol. It is shown that rate adaptation does not require changing of
the modulation format. The performance of the proposed 1024QAM shaped system is
validated on all 5 channels of the WDM signal for selected distances and rates.
Finally, it was shown via EXIT charts and BER analysis that iterative
demapping, while generally beneficial to the system, is not a requirement for
achieving the shaping gain.Comment: 10 pages, 12 figures, Journal of Lightwave Technology, 201
On the BICM Capacity
Optimal binary labelings, input distributions, and input alphabets are
analyzed for the so-called bit-interleaved coded modulation (BICM) capacity,
paying special attention to the low signal-to-noise ratio (SNR) regime. For
8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded
binary code results in a higher capacity than the binary reflected gray code
(BRGC) and the natural binary code (NBC). The 1 dB gap between the additive
white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be
almost completely removed if the input symbol distribution is properly
selected. First-order asymptotics of the BICM capacity for arbitrary input
alphabets and distributions, dimensions, mean, variance, and binary labeling
are developed. These asymptotics are used to define first-order optimal (FOO)
constellations for BICM, i.e. constellations that make BICM achieve the Shannon
limit -1.59 \tr{dB}. It is shown that the \Eb/N_0 required for reliable
transmission at asymptotically low rates in BICM can be as high as infinity,
that for uniform input distributions and 8-PAM there are only 72 classes of
binary labelings with a different first-order asymptotic behavior, and that
this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general
answer to the question of FOO constellations for BICM is also given: using the
Hadamard transform, it is found that for uniform input distributions, a
constellation for BICM is FOO if and only if it is a linear projection of a
hypercube. A constellation based on PAM or quadrature amplitude modulation
input alphabets is FOO if and only if they are labeled by the NBC; if the
constellation is based on PSK input alphabets instead, it can never be FOO if
the input alphabet has more than four points, regardless of the labeling.Comment: Submitted to the IEEE Transactions on Information Theor
A Novel Power Allocation Scheme for Two-User GMAC with Finite Input Constellations
Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple
Access Channels (GMAC) have been recently reported, wherein an appropriate
angle of rotation between the constellations of the two users is shown to
enlarge the CC capacity region. We refer to such a scheme as the Constellation
Rotation (CR) scheme. In this paper, we propose a novel scheme called the
Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit
power of the two users are varied by maintaining their average power
constraints. We show that the CPA scheme offers CC sum capacities equal (at low
SNR values) or close (at high SNR values) to those offered by the CR scheme
with reduced decoding complexity for QAM constellations. We study the
robustness of the CPA scheme for random phase offsets in the channel and
unequal average power constraints for the two users. With random phase offsets
in the channel, we show that the CC sum capacity offered by the CPA scheme is
more than the CR scheme at high SNR values. With unequal average power
constraints, we show that the CPA scheme provides maximum gain when the power
levels are close, and the advantage diminishes with the increase in the power
difference.Comment: To appear in IEEE Transactions on Wireless Communications, 10 pages
and 7 figure
- …
