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Signal Shaping for BICM at Low SNR
Erik Agrell and Alex Alvarado

Abstract—The generalized mutual information (GMI) of bit-
interleaved coded modulation (BICM) systems, sometimes called
the BICM capacity, is investigated at low signal-to-noise ratio
(SNR). The combinations of input alphabet, input distribution,
and binary labeling that achieve the Shannon limit –1.59 dB are
completely characterized. The main conclusion is that a BICM
system with probabilistic shaping achieves the Shannon limit at
low SNR if and only if it can be represented as a zero-mean linear
projection of a hypercube. Hence, probabilistic shaping offers no
extra degrees of freedom to optimize the low-SNR BICM-GMI,
in addition to what is provided by geometrical shaping. The
analytical conclusions are confirmed by numerical results, which
also show that for a fixed input alphabet, probabilistic shaping
can improve the BICM-GMI in the low and medium SNR range.

Index Terms—Binary labeling, bit-interleaved coded modu-
lation, generalized mutual information, Hadamard transform,
probabilistic shaping, Shannon limit, wideband regime.

I. I NTRODUCTION

The most important breakthrough for coded modulation
(CM) in fading channels came in 1992, when Zehavi intro-
duced the so-called bit-interleaved coded modulation (BICM)
[1], usually referred to as a pragmatic approach for CM [2],
[3]. Despite not being fully understood theoretically, BICM
has been rapidly adopted in commercial systems such as wire-
less and wired broadband access networks, 3G/4G telephony,
and digital video broadcasting, making it the de facto standard
for current telecommunications systems [3, Ch. 1].

Signal shaping refers to the use of non-equally spaced
and/or non-equally likely symbols, i.e.,geometrical shaping
and probabilistic shaping, resp. Signal shaping has been
studied during many years, cf. [4], [5] and references therein.
In the context of BICM, geometrical shaping was studied in
[6]–[8], and probabilistic shaping, i.e., varying the probabil-
ities of the bit streams, was first proposed in [9], [10] and
developed further in [11]–[14]. Probabilistic shaping offers
another degree of freedom in the BICM design, which can
be used to make the discrete input distribution more similar to
the optimal distribution (which is in general unknown). This
is particularly advantageous at low and medium SNR.

For the additive white Gaussian noise (AWGN) channel,
the so-called Shannon Limit (SL)−1.59 dB represents the
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average bit energy-to-noise ratio needed to transmit informa-
tion reliably when the signal-to-noise ratio (SNR) tends to
zero [15], [16], i.e., in the wideband regime. When discrete
input alphabets are considered at the transmitter and a BICM
decoder is used at the receiver, the SL is not always achieved
as first noticed in [17]. This was later shown to be caused
by the selection of the binary labeling [18]. The behavior of
BICM in the wideband regime was studied in [17]–[21] as a
function of the alphabet (X) and the binary labeling (L), as-
suming a uniform input distribution. First-order optimal (FOO)
constellations were defined in [21] as the triplet[X,P,L] that
make a BICM system achieve the SL, whereP represents the
input distribution.

In this paper, the results of [21] are generalized to nonuni-
form input distributions and give a complete characterization
of FOO constellations for BICM in terms of[X,P,L]. More
particularly, the geometrical and/or probabilistic shaping rules
that should be applied to a constellation to make it FOO are
found. The main conclusion is that probabilistic shaping offers
no extra degrees of freedom in addition to what is provided
by geometrical shaping for BICM in the wideband regime.

II. PRELIMINARIES

A. Notation

Bold italic lettersx denote row vectors. Block lettersX
denote matrices or sometimes column vectors. The identity
matrix is I. The inner product between two row vectorsa
andb is denoted by〈a, b〉 and their element-wise product by
a ◦ b. The Euclidean norm of the vectora is denoted by‖a‖.
Random variables are denoted by capital lettersX and random
vectors by boldface capital vectorsX. The probability density
function (pdf) of the random vectorY is denoted bypY (y)
and the conditional pdf bypY |X(y|x). A similar notation
applies to probability mass functions of a random variable,
which are denoted byPY (y) andPY |X(y|x). Expectations
are denoted byE.

The empty set is denoted by∅ and the binary set byB ,

{0, 1}. The negation of a bitb is denoted bȳb = 1−b. Binary
addition (exclusive-OR) of two bitsa andb is denoted bya⊕b.
The same notationa⊕ b denotes the integer that results from
taking the bitwise exclusive-or of two integersa andb.

B. System Model

We consider transmissions over a discrete-time memoryless
vectorial fast fading channel. The received vector at any
discrete time instant is

Y = H ◦X +Z (1)

whereX is the channel input andZ is Gaussian noise with
zero mean and varianceN0/2 in each dimension [1], [3,
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Fig. 1. A generic BICM system, consisting of a BICM transmitter, the channel, and a BICM receiver.

App. 2.A]. The channel is represented by theN -dimensional
vectorH. It contains the real fading coefficientsHi, which
are random, possibly dependent, with the same pdfpH(h). We
assume thatH andN0 are perfectly known at the receiver or
can be perfectly estimated, and that the technical requirements
on X andH in [21, Sec. I-D] are satisfied.

The conditional transition pdf of the channel in (1) is

pY |X,H(y|x,h) = 1

(N0π)N/2
exp

(

−‖y − h ◦ x‖2
N0

)

. (2)

The SNR is defined as

ρ , E[H2]
Es

N0
= Rc

Er
b

N0
(3)

where Es , E[‖X‖2] is the averagetransmitted symbol
energy,Rc is the transmission rate in information bits per
symbol, andEr

b , E[H2]Es/Rc is the averagereceived
energy per information bit.

The generic BICM scheme in Fig. 1 is considered. The
transmitter is, in the simplest case, a single binary encoder
concatenated with an interleaver and a memoryless mapper
Φ. Multiple encoders and/or interleavers may be needed to
achieve probabilistic shaping [10]–[13]. At the receiver,using
the channel outputY , the demapperΦ−1 computes metricsLk
for the individual coded bitsCk with k = 0, . . . ,m−1, usually
in the form of logarithmic likelihood ratios. These metricsare
then passed to the deinterleaver(s) and decoder(s) to obtain an
estimate of the information bits.

The mapperΦ is defined via the input alphabetX =
[xT

0 , . . . ,x
T
M−1]

T ∈ R
M×N , wherem bits are used to index

theM = 2m symbols vectorsxi ∈ R
N for i = 0, . . . ,M − 1.

We associate with each symbolxi the codeword (binary
labeling) ci , [ci,0, . . . , ci,m−1] ∈ Bm and the probability
0 ≤ Pi ≤ 1, wherePi , PX(xi). The binary labeling is
denoted byL = [cT0 , . . . , c

T
M−1]

T ∈ BM×m and the input
distribution byP = [P0, . . . , PM−1]

T ∈ [0, 1]M .
In the following, the labeling used throughout this paper is

defined. This can be done without loss of generality, as will
be explained in Sec. II-C.

Definition 1 (Natural binary code):The natural binary
code (NBC) is the binary labelingNm , [n(0)T, . . . ,n(M −
1)T]T, wheren(i) = [ni,0, . . . , ni,m−1] ∈ Bm denotes the
base-2 representation of the integer0 ≤ i ≤ M − 1, with
ni,m−1 being the most significant bit.

This definition of the NBC is different from the one in
[21]. The difference lies only in the bit ordering, i.e., in this
paper we consider the last column ofNm to contain the most
significant bits of the base-2 representation of the integers i =

0, 1, . . . ,M − 1. It follows from Definition 1 that

n2l,k =

{

1, k = l,

0, k 6= l
(4)

for k = 0, . . . ,m− 1 and l = 0, . . . ,m− 1, and

ni⊕j,k = ni,k ⊕ nj,k (5)

for i = 0, . . . ,M−1, j = 0, . . . ,M−1 andk = 0, . . . ,m−1.

C. Probabilistic Shaping in BICM

Assuming independent, but possibly nonuniformly dis-
tributed, bitsC0, . . . , Cm−1 at the input of the modulator
(cf. Fig. 1), the symbol probabilities are given by [21, eq.
(30)] [13, eq. (8)] [22, eq. (9)]

Pi =

m−1
∏

k=0

PCk
(ci,k)

for i = 0, . . . ,M − 1, where PCk
(u) for u ∈ B is the

probability ofCk = u. SincePCk
(1) = 1 − PCk

(0), the dis-
tribution P is fully specified by the vector of bit probabilities
b , [PC0

(0), . . . , PCm−1
(0)].

Throughout this paper, we assume that0 < PCk
(0) < 1

for all k = 0, . . . ,m − 1; i.e., all constellation points are
used with a nonzero probability. This can be done without
loss of generality, because ifPCk

(0) = 0 or PCk
(0) = 1 for

somek, then half of the constellation points will never be
transmitted. If this is the case, the corresponding branches in
Fig. 1 are removed,m is reduced by one, and the mapperΦ
is redefined accordingly.1 The result is another BICM scheme
with identical performance, which satisfies0 < PCk

(0) < 1
for all k.

For any constellation[X,P,L], a set of equivalent constel-
lations can be constructed by permuting the rows ofX, L, and
P, provided that the same permutation is applied to all three
matrices. Specifically, denote the permutation that maps the
NBC into the desired labelingL by Π, i.e.,Π(Nm) = L. The
BICM system defined by the alphabetΠ(X), the distribution
Π(P), and the labelingΠ(Nm) = L is entirely equivalent
to the system with alphabetX, distribution P, and labeling
Nm. Without loss of generality, the analysis in this paper is
therefore restricted to the latter case.

Based on the previous discussion, from now on we use the
nameconstellationto denote the pair[X,P], where the NBC
labeling is implicit. Thus,L = Nm and ci,k = ni,k for all i

1Constellations withPCk
= 0 for some k can yield counter-intuitive

results, such as Gray-labeled constellations being FOO (see [13], [14] and
Example 7.)
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and k, which simplifies the analysis. Note thatP cannot be
chosen arbitrarily in BICM; only distributions that satisfy

Pi =
m−1
∏

k=0

PCk
(ni,k) (6)

for some vector of bit probabilitiesb will be considered
in the paper. An important special case is theuniform dis-
tribution, for which b = [1/2, . . . , 1/2] and P = Um ,

[1/M, . . . , 1/M ]T.

D. The Hadamard Transform

The Hadamard transform (HT), or Walsh–Hadamard trans-
form, is a discrete, linear, orthogonal transform, whose coeffi-
cients take values in±1. It is popular in image processing [23]
and can be used to analyze various aspects of binary labelings
in digital communications and source coding [21], [24]–[26].

Definition 2: The HT X̃ = [x̃T
0 , . . . , x̃

T
M−1]

T of a matrix
(or vector)X = [xT

0 , . . . ,x
T
M−1]

T with M = 2m rows is

x̃i ,
1

M

M−1
∑

j=0

xjhi,j , i = 0, . . . ,M − 1 (7)

where for alli = 0, . . . ,M − 1 andj = 0, . . . ,M − 1

hi,j =

m−1
∏

k=0

(−1)ni,knj,k . (8)

Becausen0,k = 0 for k = 0, . . . ,m − 1, settingi = 0 in
(7)–(8) shows that the first HT vector

x̃0 =
1

M

M−1
∑

j=0

xj (9)

can be interpreted as the uniformly weighted mean of the
alphabet. This is a property that the HT shares with, e.g., the
discrete Fourier transform.

It can be shown from (8) that

M−1
∑

i=0

hi,lhi,j =

{

M, j = l,

0, j 6= l
(10)

for all j = 0, . . . ,M −1 andl = 0, . . . ,M −1. Therefore, the
inverse transform is identical to the forward transform, apart
from a scale factor:

xj =

M−1
∑

i=0

x̃ihi,j , j = 0, . . . ,M − 1. (11)

E. A New Transform

In this section, we define a linear transform between vectors
or matrices, which depends on the input distributionP via the
bit probabilitiesb. Its usage will become clear in Section III-C.

Definition 3: Given the bit probabilities b =
[PC0

(0), . . . , PCm−1
(0)], the transform̊X = [̊xT

0 , . . . , x̊
T
M−1]

T

of a matrix (or vector)X = [xT
0 , . . . ,x

T
M−1]

T is

x̊i ,

M−1
∑

j=0

xjgi,j
√

Pj , i = 0, . . . ,M − 1 (12)

wherePj is given by (6). The coefficientsgi,j are defined as

gi,j ,

m−1
∏

k=0

[

(−1)n̄i,knj,k

√

PCk
(0) + (−1)ni,kn̄j,k

√

PCk
(1)
]

(13)

for all i = 0, . . . ,M − 1 and j = 0, . . . ,M − 1, where the
bars represent negation (b̄ = 1− b, see Sec. II-A).

Remark 1:For equally likely symbols, i.e.,P = Um, the
transform becomes the identity operationX̊ = X, because then
gi,i =

√
M for i = 1, . . . ,M andgi,j = 0 for i 6= j.

The transform coefficientsgi,j are nonsymmetric in the
sense that in generalgi,j 6= gj,i. They have some appealing
properties given by the following lemma, which will be used
in the proofs of Theorems 3, 4, and 8.

Lemma 1:For anyj = 0, . . . ,M−1 andl = 0, . . . ,M−1,

M−1
∑

i=0

gi,lgi,j =

{

M, j = l,

0, j 6= l,
(14)

M−1
∑

i=0

hl,igi,j =Mhj,l
√

Pj⊕l (15)

wherePj is given by (6) andhl,i is defined in (8).
Proof: See the Appendix.

We pay particular attention to two important special cases
of (15). First, if l = 0, thenhl,j = hj,l = 1 andPj⊕l = Pj
for j = 0, . . . ,M − 1. Second, if l = 2k for any integer
k = 0, . . . ,m− 1, then by (8),hl,i = hi,l = (−1)ni,k for any
i = 0, . . . ,M − 1 and by (6)

Pj⊕l =

m−1
∏

k′=0

PCk
(nj⊕2k,k′).

Using first (5) and then (4), we obtain

Pj⊕l =

(

m−1
∏

k′=0

PCk
(nj,k′)

)

PCk
(nj,k ⊕ 1)

PCk
(nj,k)

= Pj
PCk

(n̄j,k)

PCk
(nj,k)

.

Substituting these two cases (l = 0 and l = 2k) into (15)
proves the following corollary.

Corollary 2: For anyj = 0, . . . ,M − 1,

M−1
∑

i=0

gi,j =M
√

Pj (16)

M−1
∑

i=0

(−1)ni,kgi,j =M(−1)nj,k

√

Pj
PCk

(n̄j,k)

PCk
(nj,k)

. (17)

The fact that the sums
∑M−1

i=0 gi,lgi,j in (14) are zero
wheneverj 6= l, independently of the input distribution,
implies that the coefficientsgi,j form an orthogonal basis. As
a consequence, the transform is invertible, as shown in the
next theorem.

Theorem 3:The inverse transformX = [xT
0 , . . . ,x

T
M−1]

T

of a matrix (or vector)̊X = [̊xT
0 , . . . , x̊

T
M−1]

T is, given the bit
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Def. 3
X ⇐⇒ S = X̊ = GD1/2X

Theorem 3

HT ⇐
⇒ HT ⇐
⇒

Theorem 4
X̃ = 1

MHX ⇐⇒ S̃ = 1
MHS = TX̃

Fig. 2. The relations between the alphabetX, its transformS, and their
respective Hadamard transforms̃X and S̃. The transform matricesG, D, H,
andT are defined in Examples 1 and 2.

probabilitiesb = [PC0
(0), . . . , PCm−1

(0)],

xj =
1

M
√

Pj

M−1
∑

i=0

x̊igi,j , j = 0, . . . ,M − 1. (18)

Proof: For j = 0, . . . ,M − 1,

M−1
∑

i=0

x̊igi,j =

M−1
∑

i=0

gi,j

M−1
∑

l=0

xlgi,l
√

Pl

=

M−1
∑

l=0

xl
√

Pl

M−1
∑

i=0

gi,lgi,j.

Applying (14) and dividing both sides byM
√

Pj , which by
Sec. II-C is nonzero, completes the proof.

Example 1: If the bit probabilities are b =
[0.35, 0.50], then the symbol probabilities (6) are
P = [0.175, 0.325, 0.175, 0.325]T. The transform coefficients
gi,j in (13) are the elements at rowi, columnj of

G =









1.977 0.304 0 0
−0.304 1.977 0 0

0 0 1.977 0.304
0 0 −0.304 1.977









(19)

It is readily verified thatGTG = MI, which is (14) in
matrix notation. The mean values in each column of (19) are
[0.418, 0.570, 0.418, 0.570]T, which in agreement with (16)
are the square roots of the elements inP. Similarly, it can be
shown thatG in (19) satisfies (15) and (17).

If the Gray-labeled4-ary pulse amplitude modulation
(PAM) constellation[X,P] is considered,X = [−3,−1, 3, 1]T.
Rewriting (12) in matrix notation, the transform can be cal-
culated as̊X = GD1/2X = [−2.654,−0.746, 2.654, 0.746],
whereD , diag(P). This nonequally spaced 4-PAM alphabet
will be illustrated and analyzed in Example 3. The inverse
transform (18) can be written asX = (1/M)D−1/2

G
T
X̊. For

a uniform distribution,G = D−1/2 =
√
MI, which agrees

with Remark 1.
In Sec. IV-B, we will need to apply the HT and the new

transform after each other to the same alphabet. However, the
two transforms do not commute, and the result will therefore
depend on in which order the transforms are applied. Of
particular interest for our analysis is the setup in Fig. 2, where
X and S are related via the transform defined above. Their
HTs X̃ and S̃ are however not related via the same transform.
Instead, a relation betweeñX andS̃ can be established via the
following theorem.

Theorem 4:If S = X̊, then their HTs̃S and X̃ satisfy

s̃i = ψi

M−1
∑

j=0

x̃j

m−1
∏

k=0
nj,k 6=ni,k

(PCk
(0)− PCk

(nj,k)) ,

i = 0, . . . ,M − 1, (20)

x̃j =

M−1
∑

i=0

s̃i

ψi

m−1
∏

k=0
ni,k 6=nj,k

(PCk
(ni,k)− PCk

(0)) ,

j = 0, . . . ,M − 1 (21)

where

ψi ,

m−1
∏

k=0
ni,k=1

2
√

PCk
(0)PCk

(1), i = 0, . . . ,M − 1 (22)

and a product over∅ is defined as 1.
Proof: See the Appendix.

Remark 2:The summation in (20) can be confined to
∑M−1
j=i , because wheneverj < i, there exists at least one

bit position k for which ni,k 6= nj,k = 0. Analogously, the
summation in (21) can be confined to

∑M−1
i=j .

Example 2:Expression (20) can be written asS̃ = TX̃, or
X̃ = T−1S̃. The element at rowi, column j of T andT−1

are given by (20)–(21) as, resp.,ψi
∏

k: nj,k 6=ni,k
(PCk

(0) −
PCk

(nj,k)) and (1/ψj)
∏

k: nj,k 6=ni,k
(PCk

(nj,k) − PCk
(0)).

With b, X and X̊ from Example 1, we obtain[ψ0, . . . , ψ3] =
[1, 0.954, 1, 0.954] and

T =









1 −0.300 0 0
0 0.954 0 0
0 0 1 −0.300
0 0 0 0.954









, T−1 =









1 0.315 0 0
0 1.048 0 0
0 0 1 0.315
0 0 0 1.048









(23)

which, as predicted by Remark 2, are upper triangular.
Another relation betweeñX and S̃ can be deduced from

Fig. 2. Defining the Hadamard matrixH as the matrix with
elementshi,j for i, j = 0, . . . ,M−1, the HT relations (7) and
(11) yieldS̃ = (1/M)HS andX = HX̃. Since from Example 1
S = X̊ = GD1/2X, we conclude that̃S = (1/M)HGD1/2HX̃,
which implies thatT = (1/M)HGD1/2H. BecauseH−1 =
(1/M)H (see (10)) andG−1 = (1/M)GT, the inverse relation
is T−1 = (1/M2)HD−1/2GTH. It is straightforward to verify
thatT andT−1 calculated in this manner, using the numerical
values ofG andD in Example 1, indeed yield (23).

III. BICM AT LOW SNR

A. Mutual Information

The mutual information(MI) in bits per channel use be-
tween the random vectorsX andY for an arbitrary channel
parameterH perfectly known at the receiver is defined as

I(X;Y |H) , E

[

log2
pY |X,H(Y |X ,H)

pY |H(Y |H)

]

where the expectation is taken over the joint pdfpX,Y ,H , and
pY |X,H is given by (2).
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The MI betweenX andY conditioned on the value of the
kth bit at the input of the modulator is defined as

I(X;Y |H, Ck) , E

[

log2
pY |X,H,Ck

(Y |X,H, Ck)

pY |H,Ck
(Y |H, Ck)

]

where the expectation is taken over the joint pdfpX,Y ,H,Ck
.

Definition 4 (BICM Generalized Mutual Information):
The BICM generalized mutual information (BICM-GMI) is
defined as [2], [17], [18], [27]

I (ρ) ,

m−1
∑

k=0

I(Ck;Y |H)

= mI(X;Y |H)−
m−1
∑

k=0

I(X;Y |H , Ck) (24)

where the second line follows by the chain rule. We will
analyze the right-hand side of (24) as a function ofρ, for
a given pdfpH . According to (3),ρ can be varied in two
ways, either by varyingN0 for a fixed constellation[X,P] or,
equivalently, by rescaling the alphabetX linearly for fixedN0

and input distributionP.
Martinezet al. [27] recognized the BICM decoder in Fig. 1

as a mismatched decoder and showed that the BICM-GMI in
(24) corresponds to an achievable rate of such a decoder. This
means that reliable transmission using a BICM system at rate
Rc is possible ifRc ≤ I (ρ). Since from (3)Er

b/N0 = ρ/Rc,
the inequalityRc ≤ I(ρ) gives2

Er
b

N0
≥ ρ

I(ρ)
(25)

for any ρ. Focusing on the wideband regime, i.e., asymptoti-
cally low SNR, we make the following definition.

Definition 5 (Low-GMI Parameters):The low-GMI param-
etersof a constellation[X,P] are defined as[µ, Es, α], where

µ , E[X]

Es , E[‖X‖2]

α ,
dI(ρ)

dρ

∣

∣

∣

∣

ρ=0

.

In the wideband regime, the average bit energy-to-noise
ratio needed for reliable transmission is, using (25) and the
definition ofα, lower-bounded by

Er
b

N0
≥ lim
ρ→0+

ρ

I(ρ)
=

1

α
. (26)

Furthermore, since in the wideband regimeEr
b/N0 ≥ loge2 =

−1.59 dB [15], α−1 ≥ −1.59 dB.
The first-order behavior of the BICM-GMI in (24) is fully

determined byα, which, as we shall see later (e.g., in (36)), in
turn depends onµ andEs. This is why we designate this triplet
as low-GMI parameters. The same definitions can be applied
to other MI functionsI (ρ) such as the coded modulation MI
(CM-MI) [21]. In this paper, however, we are only interested
in the BICM-GMI.

2The definition of the related functionf(Rc) in [21, eq. (37)] is erroneous
and should read “Eb/N0 is bounded from below byf(Rc)/EH [H2], where
f(Rc) , C−1(Rc)/Rc.”

The main contributions of this paper are to characterize
the low-GMI parameters for arbitrary constellations, includ-
ing those with nonuniform distributions (Sec. III-C), and to
identify the set of constellations for BICM that maximizeα,
i.e., minimizeEr

b/N0 in the wideband regime (Sec. IV-B).

B. Low-GMI Parameters for Uniform Distributions

The low-GMI parameters[µ, Es, α] have been analyzed in
detail for arbitrary input alphabetsX under the assumption of
uniform probabilities [21]. Under this assumption, they can be
expressed as given by the following theorem.

Theorem 5:For a constellation[X,Um], the low-GMI pa-
rameters are

µ =
1

M

M−1
∑

i=0

xi, (27)

Es =
1

M

M−1
∑

i=0

‖xi‖2, (28)

α =
log2 e
M2Es

m−1
∑

k=0

∥

∥

∥

∥

∥

M−1
∑

i=0

(−1)ni,kxi

∥

∥

∥

∥

∥

2

. (29)

Proof: Expressions (27) and (28) follow directly from
Definition 5, while (29) was proved in [21, eq. (50)].

The low-GMI parameters can be conveniently expressed as
functions of the HTX̃ of the alphabetX, as shown in the
following theorem.

Theorem 6:The low-GMI parameters can be expressed as

µ = x̃0, (30)

Es =

M−1
∑

i=0

‖x̃i‖2, (31)

α =
log2 e
Es

m−1
∑

k=0

‖x̃2k‖2. (32)

Proof: The expression (30) is obtained from (9), (31)
from [21, eq. (16)], and (32) from [21, Th. 11].

C. Low-GMI Parameters for Nonuniform Distributions

The next theorem is analogous to Theorem 5 but applies to
an arbitrary input distribution.

Theorem 7:For a constellation[X,P], the low-GMI param-
eters are

µ =

M−1
∑

i=0

Pixi, (33)

Es =

M−1
∑

i=0

Pi‖xi‖2, (34)

α =
log2 e
Es

M−1
∑

i=0

Pi

M−1
∑

j=0

Pj 〈xi,xj〉

·
m−1
∑

k=0

(−1)ni,k+nj,k
PCk

(n̄i,k)

PCk
(nj,k)

. (35)
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TABLE I
LOW-GMI PARAMETERS ANDFOOCONDITIONS FORBICM USING UNIFORM AND NONUNIFORM INPUT DISTRIBUTIONS. THE RESULTS FOR[X,Um]

ARE FROM [21] (CF. THEOREMS6 AND 9) AND THE ONES FOR[X,P] OR [X̊,Um] ARE FROM THEOREMS7, 8,AND 11.

[X,Um] [X,P] or [X̊,Um]

µ x̃0

M−1∑

i=0

Pixi

Es

M−1∑

i=0

‖x̃i‖
2

M−1∑

i=0

Pi‖xi‖
2

α
log2 e

Es

m−1∑

k=0

‖x̃2k‖
2 log2 e

Es

M−1∑

i=0

Pi

M−1∑

j=0

Pj 〈xi,xj〉

m−1∑

k=0

(−1)ni,k+nj,k
PCk

(n̄i,k)

PCk
(nj,k)

FOO Condition x̃j = 0, ∀j /∈ {1, 2, 4, . . . ,M/2} µ = 0 and x̃j = 0, ∀j /∈ {0} ∪ {1, 2, 4, . . . ,M/2}

Proof: Again, (33) and (34) follow from Definition 5,
while (35) requires some analysis. It was shown in [21, Th. 10]
that

α =
log2 e
2Es

m−1
∑

k=0

[ ∥

∥

∥

∥

∥

M−1
∑

i=0

(−1)ni,k
Pixi

√

PCk
(ni,k)

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

M−1
∑

i=0

Pixi
√

PCk
(ni,k)

∥

∥

∥

∥

∥

2

− 2‖µ‖2
]

. (36)

Substituting (33) and writing the squared norms as the inner
products of two identical vectors yields

α =
log2 e
2Es

m−1
∑

k=0

M−1
∑

i=0

M−1
∑

j=0

PiPj 〈xi,xj〉

·
[

(−1)ni,k(−1)nj,k

√

PCk
(ni,k)PCk

(nj,k)

+
1

√

PCk
(ni,k)PCk

(nj,k)
− 2

]

.

The expression in brackets can be simplified as

(−1)ni,k+nj,k + 1
√

PCk
(ni,k)PCk

(nj,k)
− 2 =

{

2
PCk

(n̄j,k)

PCk
(nj,k)

, nj,k = ni,k

−2, nj,k 6= ni,k

= 2(−1)ni,k+nj,k
PCk

(n̄i,k)

PCk
(nj,k)

which completes the proof of (35).
Theorem 7 shows that the low-GMI parameters depend on

the input alphabetX, the binary labeling (viani,k in the
expression forα), and the input distribution (viaPCk

(u) and
Pi). While the low-GMI parameters of an alphabetX with
uniform probabilities are conveniently expressed in termsof
its HT X̃ (cf. Theorem 6), no similar expressions are known
for the low-GMI parameters of a general constellation in
(33)–(35). This has so far prevented the analytic optimiza-
tion of such constellations. The new transform introduced in
Section II-E, however, solves this problem by establishing
an equivalence between an arbitrary constellation, possibly
with nonuniform probabilities, and another constellationwith
uniform probabilities.

Theorem 8:The low-GMI parameters[µ, Es, α] of any
constellation[X,P] are equal to the low-GMI parameters of
[X̊,Um].

Proof: Let the low-GMI parameters of[X̊,Um] be de-
noted by[µ′, Es

′, α′]. First, (27) and (12) yield

µ′ =
1

M

M−1
∑

i=0

M−1
∑

j=0

xjgi,j
√

Pj

=
1

M

M−1
∑

j=0

xj
√

Pj

M−1
∑

i=0

gi,j . (37)

Applying (16) to the inner sum in (37) reveals that

µ′ =

M−1
∑

j=0

Pjxj = µ.

Second, (28) and (12) yield

Es
′ =

1

M

M−1
∑

i=0

‖xi‖2

=
1

M

M−1
∑

i=0

〈

M−1
∑

j=0

xjgi,j
√

Pj ,

M−1
∑

l=0

xlgi,l
√

Pl

〉

=
1

M

M−1
∑

j=0

M−1
∑

l=0

〈xj ,xl〉
√

PjPl

M−1
∑

i=0

gi,jgi,l.

Evaluating the inner sum using (14) gives

Es
′ =

M−1
∑

j=0

Pj‖xj‖2 = Es.

For the third and last part of the theorem, (29) yields

α′ =
log2 e
M2Es

m−1
∑

k=0

∥

∥

∥

∥

∥

M−1
∑

i=0

(−1)ni,k x̊i

∥

∥

∥

∥

∥

2

(38)

wherex̊i is given by (12). The inner sum can be expanded as
M−1
∑

i=0

(−1)ni,k x̊i =

M−1
∑

i=0

(−1)ni,k

M−1
∑

j=0

xjgi,j
√

Pj

=

M−1
∑

j=0

xj
√

Pj

M−1
∑

i=0

(−1)ni,kgi,j .

Applying (17) to the inner sum, we obtain

M−1
∑

i=0

(−1)ni,k x̊i =M

M−1
∑

j=0

xjPj(−1)nj,k

√

PCk
(n̄j,k)

PCk
(nj,k)

.
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Fig. 3. 16-QAM constellation[XQAM ,P1] (black circles) with bit probabili-
ties b1 = [0.35, 0.50, 0.35, 0.50]. Each symbolxj is marked with its index
j, and its probabilityPj is proportional to the area of the corresponding circle.
White circles represent the transformed constellation[X̊QAM ,U4], which has
the same low-GMI parameters.

We take the inner product of this vector with itself and
substitute the obtained expression for the squared norm in (38).
This yields, after rearranging terms,

α′ =
log2 e
Es

m−1
∑

k=0

M−1
∑

i=0

M−1
∑

j=0

〈xi,xj〉

· PiPj(−1)ni,k+nj,k

√

PCk
(n̄i,k)

PCk
(ni,k)

PCk
(n̄j,k)

PCk
(nj,k)

(39)

= α. (40)

The square root in (39) isPCk
(n̄i,k)/PCk

(ni,k) if nj,k = ni,k
or 1 if nj,k = n̄i,k. In both cases, it can be expressed as
PCk

(n̄i,k)/PCk
(nj,k) (or, equivalently,PCk

(n̄j,k)/PCk
(ni,k)).

Comparing this result with (35) gives (40).
Theorem 8 shows that the constellation[X,P] can be

mapped to another constellation[X̊,Um] with the same low-
GMI parameters, where̊X is related toX via (12) and (18).
This relation between[X,P] and [X̊,Um] will be applied in
Sec. IV-B to prove Theorem 10, which is the main result of
the paper. To summarize, Table I lists the low-GMI parameters
for BICM given by Theorems 6 and 7. The equivalence of the
parameters for[X,P] or [X̊,Um] comes from Theorem 8.

D. Numerical Examples

In this Section, we show examples of how the transform
defined in Sec. II-E works and we also present equivalent
constellations[X,P] and [X̊,Um]. All results are for the
AWGN channel. The (G)MIs are numerically evaluated using
Gauss–Hermite quadratures following [28, Sec. III].

Example 3:Consider the equally spaced 16-ary square
quadrature amplitude modulation (16-QAM) alphabetX =
XQAM labeled by the binary reflected Gray code (BRGC)
[29] with bit probabilitiesb1 = [0.35, 0.5, 0.35, 0.5], shown
with black circles in Fig. 3. The input distributionP = P1

0

0.2

0.4

0.6

0.8

1

−2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

Er
b/N0 [dB]

R
c

[b
it/

sy
m

b
o

l]

CAW

CM [XQAM ,U4]
BICM [XQAM ,U4]
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BICM [X̊QAM ,U4]

Fig. 4. BICM-GMI for probabilistically shaped 16-QAM and its transform.
The CM-MI and BICM-GMI for uniform input distributions are also shown,
as is the AWGN capacityCAW . The white circle and square indicate (26)
with α given by (41) and by [21, eq. (55)], resp.

given by (6) isP0 = P2 = P8 = P10 = 0.031, P1 =
P3 = P4 = P6 = P9 = P11 = P12 = P14 = 0.057, and
P5 = P7 = P13 = P15 = 0.106. These symbol probabilities
are indicated in Fig. 3, where the area of the circle representing
xj is proportional to the corresponding probabilityPj .

Another alphabet̊XQAM is obtained by applying the trans-
form in (12) to the constellation[XQAM ,P1]. The white circles
in Fig. 3 represent the symbols in̊XQAM using a uniform
distributionU4. The alphabet̊XQAM is still a rectangular 16-
QAM constellation, but a nonuniformly spaced one. Every row
in Fig. 3 can be regarded as a probabilistically shaped (black)
or a geometrically shaped (white) 4-PAM constellation; in fact
the same 4-PAM constellations as in Example 1.

The low-GMI parameters of the two constellations
[XQAM ,P1] and[X̊QAM ,U4], given by Theorems 7 and 5, resp.,
are identical, as predicted by Theorem 8. These are

µ = 0, Es = 7.60, α = 1.10. (41)

The BICM-GMI for the constellations[XQAM ,P1] and
[X̊QAM ,U4] are shown in Fig. 4. In this figure, we also show
the capacity of the AWGN channelCAW [21, eq. (22)] and
the CM-MI and BICM-GMI for 16-QAM using a uniform
input distribution, i.e.,[XQAM ,U4]. The results show that the
BICM-GMIs of the original constellation[XQAM ,P1] and the
transformed constellation[X̊QAM ,U4] are in general different;
however, they converge in the low-SNR regime. The endpoints
of the BICM-GMI curves for[XQAM ,P1] and [X̊QAM ,U4] are
shown with a white circle, whose value follows from (41)
and (26). The endpoint for the BICM-GMI curve for the
constellation[XQAM,U4] is shown with a white square [17,
eq. (18)].

Example 4:Consider the NBC-labeledM -ary phase-shift
keying (PSK) alphabetX = XPSK, wherexj = [cos(2πj/M+
π/M), sin(2πj/M + π/M)] with j = 0, . . . ,M − 1. The
constellation forM = 8 for two input distributionsP are
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circles) and the transformed constellation[X̊PSK,U3] (white circles), which
have the same low-GMI parameters. The circle areas is proportional to the
symbol probabilitiesPj . Dashed lines join symbols whose labels differ in one
bit only.
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Fig. 6. 8-PSK constellation[XPSK,P3] with bit probabilities b3 (black
circles) and its transform[X̊PSK,U3] (white circles).

shown in Figs. 5 and 6, where again the circle areas are
proportional to the symbol probabilitiesPj . We denote these
input distributions byP2 and P3, which are generated by
b2 = [0.5, 0.7, 0.9] and b3 = [0.9, 0.7, 0.3], resp. The trans-
forms X̊PSK are irregular, not resembling a PSK alphabet.
Nevertheless, the low-GMI parameters for pairs of constel-
lations [XPSK,Pi] and [X̊PSK,U3] are again equal. Particularly,
α = 0.67 for [XPSK,P2] andα = 0.76 for [XPSK,P3].

The BICM-GMI for the two 8PSK constellations in Figs. 5
and 6 is shown in Fig. 7. Also shown are the BICM-GMI
and CM-MI for 8-PSK with uniform input distributions, for
which α = 0.62 [21, eq. (56)] andα = log2 e, resp., and
the capacity of the AWGN channel. Again, the results show
that the BICM-GMIs of the original constellation[XPSK,Pi]
and the transformed constellation[X̊PSK,U3] are in general
different but converge in the low-SNR regime. The endpoints

0

0.2

0.4

0.6

0.8

1

−2 0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

 

 

Er
b/N0 [dB]

R
c

[b
it/

sy
m

b
o

l]

CAW

CM [XPSK,U3]
BICM [XPSK,U3]
BICM [XPSK,Pi]

BICM [X̊PSK,U3]

P2 P3

Fig. 7. BICM-GMI of the two probabilistically shaped 8-PSK constellations
in Figs. 5 and 6 and their transforms[X̊PSK,U3]. The CM-MI and BICM-GMI
for uniform input distributions are also shown. The white circles and square
show the endpointsα−1.
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Fig. 8. Star-shaped 8-QAM constellation[X8QAM,P4] with bit probabilities
b4 (black circles) and its transform[X̊8QAM,U3] (white circles).

of the BICM-GMI curves are obtained from (26).
Example 5:Consider the eight-level star-shaped QAM al-

phabet shown in Fig. 8 (black circles), which we denote by
X8QAM. This alphabet is used with bit probabilitiesb4 =
[0.5, 0.5, 0.85], giving an input symbol probabilityP4. In this
figure we also show the transformed constellation[X̊8QAM,U3],
which according to Theorem 8 has the same low-GMI pa-
rameters as[X8QAM,P4]. This can be appreciated in Fig. 9,
where the corresponding BICM-GMIs are shown. Fig. 9 also
shows how probabilistic shaping improves the BICM-GMI
considerably over a wide range of SNRs.

The results in Figs. 4, 7, and 9 also show other interesting
properties of probabilistic shaping for BICM. In the high-
SNR regime, the use of a nonuniform distribution results in
a loss in GMI, i.e., the curves flatten out at a value below
m [bit/symbol], but for a wide range of moderately high SNR,
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the BICM-GMI is higher with probabilistic shaping. For the
16-QAM alphabet in Example 3, in the medium SNR regime,
the use of nonequally likely symbols even gives a larger GMI
than the CM-MI obtained with and a uniform distribution.

IV. F IRST-ORDER OPTIMAL CONSTELLATIONS

Having characterized the low-SNR behavior of the BICM-
GMI of an arbitrary constellation, the next step is to searchfor
optimal constellations in terms of the BICM-GMI at low SNR.
The following definition formally defines BICM systems that
achieve the SL.

Definition 6 (FOO constellation):The constellation[X,P]
is said to be first-order optimal (FOO) if a BICM system using
[X,P] achieves the SL−1.59 dB, i.e.,α = log2 e.

As discussed in Sec. II-C, we have fixed the labeling to be
the NBC, and thus, an FOO constellation is fully characterized
by only two parameters, the input alphabetX and its input
distribution P, where the latter satisfies (6). The analysis
is nevertheless, without loss of generality, applicable toan
arbitrary labeling by permuting the constellation, see Sec. II-C.

A. FOO Constellations for Uniform Distributions

In this section we review results on FOO constellations for
BICM for uniform input distributions. The next theorem gives
necessary and sufficient conditions for an input alphabet tobe
FOO if the binary labeling is the NBC and input distribution
is uniform.

Theorem 9:The constellation[X,Um] is FOO if and only
if

x̃j = 0, ∀j /∈ {1, 2, 4, . . . ,M/2}. (42)

Proof: From (31) and (32),α = log2 e if and only if

M−1
∑

i=0

‖x̃i‖2 =

m−1
∑

k=0

‖x̃2k‖2

which gives (42).
This theorem was given in [21, Th. 12], where it was

used to find FOO constellations for BICM whenP = Um.
It offers an appealing intuitive geometrical interpretation: An
input alphabet is FOO for a uniform input distribution if and
only if it is a zero-mean linear projection of a hypercube. This
behavior is illustrated in Example 6 and also in [21, Fig. 4].

B. FOO Constellations for Nonuniform Distributions

In this section, we derive necessary and sufficient conditions
for a BICM system, with an arbitrary input alphabet and
probability distribution, to achieve the SL, i.e., we find FOO
constellations for BICM. The conditions are derived by trans-
forming an arbitrary constellation into another constellation
with uniform probabilities using Theorem 8 and applying
Theorem 9 to this transformed constellation. Since Theorem9
is expressed in terms of the HT, a relation between the HTs of
X and X̊ is needed, which is illustrated by the bottom arrow
in Fig. 2. Such a relation is provided by Theorem 4 and will
be applied in the proofs of Theorems 10 and 11.

Theorem 10:The constellation[X,P] is FOO if and only if
the HT X̃ of X satisfies both the following conditions:

x̃0 =

m−1
∑

k=0

x̃2k (PCk
(1)− PCk

(0)) (43)

x̃j = 0, ∀j /∈ {0} ∪ {1, 2, 4, . . . ,M/2}. (44)

Proof: We will prove the theorem in two steps. First, we
prove the “if” part by showing that (43) and (44) imply that
[X,P] is FOO. Second, we prove the “only if” part by showing
that if [X,P] is FOO, then (43) and (44) hold.

For the “if” part, suppose that (43) and (44) hold for a given
constellation[X,P]. Applying (44) in (20) yields for the HT
S̃ of S = X̊

s̃j = ψj

[

x̃0

m−1
∏

k=0
n0,k 6=nj,k

(PCk
(0)− PCk

(n0,k))

+

m−1
∑

l=0

x̃2l

m−1
∏

k=0
n
2l,k

6=nj,k

(

PCk
(0)− PCk

(n2l,k)
)

]

,

j = 0, . . . ,M − 1. (45)

Since the bitsn0,k = 0 for k = 0, . . . ,m− 1, the first product
in (45) is always zero, except whenj = 0. (Recall that a
product over∅ in (20) is defined as 1.) Furthermore, because
of (4), the second product in (45) is zero wheneverj /∈ {0, 2l}
for some integerl. We can therefore identify three cases for
(45). First,

s̃j = 0, j /∈ {0} ∪ {1, 2, . . . , 2m−1}. (46)

Second,j = 0 yields

s̃0 = ψ0

[

x̃0 +
m−1
∑

l=0

x̃2l
(

PCl
(0)− PCl

(n2l,l)
)

]

= 0 (47)
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because of (43). And third, lettingj = 2i for an integeri,

s̃2i = ψ2i

m−1
∑

l=0

x̃2l

m−1
∏

k=0
n
2i,k

6=n
2l,k

(

PCk
(0)− PCk

(n2l,k)
)

,

i = 0, . . . ,m− 1. (48)

When l 6= i, the product in (48) includes two factors,k = l
andk = i. For k = i, n2l,k = 0 and the whole product is0.
Therefore, onlyl = i contributes to the sum in (48). When
l = i, the product in (48) is again over∅ and (48) becomes

s̃2i = ψ2ix̃2i . (49)

Combining the three cases (46), (47), and (49) yields

s̃j =

{

ψjx̃j , j ∈ {1, 2, . . . , 2m−1},
0, otherwise.

Using Theorem 9, we conclude that the constellation[X̊,Um]
is FOO. Finally, Theorem 8 implies that[X,P] is also FOO,
which completes the proof of the “if” part.

For the “only if” part, assume that[X,P] is FOO. By
Theorem 8,[X̊,Um] is also FOO, and by Theorem 9,s̃i = 0

for any i that is not a power of two, wherẽS is the HT of
S = X̊. We will now use Theorem 4 to translate the condition
on S̃ into conditions onX̃.

If s̃i = 0 for i /∈ {1, 2, . . . , 2m−1}, then the summation
over i = 0, . . . ,M − 1 in (21) can be reduced to a summation
over i = 2l for l = 0, . . . ,m− 1,

x̃j =
m−1
∑

l=0

s̃2l

ψ2l

m−1
∏

k=0
nj,k 6=n2l,k

(

PCk
(n2l,k)− PCk

(0)
)

,

j = 0, . . . ,M − 1. (50)

Due to (4), the product in (50) is nonzero only if the product
is overk ∈ ∅ or over the single-element setk ∈ {l}, i.e., if
j = 0 or j = 2l for some integerl, resp. Again, three cases
can be identified. First, ifj /∈ {0} ∪ {1, 2, . . . , 2m−1}, then
the product in (50) includes at least onek 6= l for everyl and

x̃j = 0, j /∈ {0} ∪ {1, 2, . . . , 2m−1}. (51)

Second, forj = 0, the product comprises only one factor,
k = l, and

x̃0 =
m−1
∑

l=0

s̃2l

ψ2l
(PCl

(1)− PCl
(0)) . (52)

And third, settingj = 2i,

x̃2i =

m−1
∑

l=0

s̃2l

ψ2l

m−1
∏

k=0
n
2i,k

6=n
2l,k

(

PCk
(n2l,k)− PCk

(0)
)

,

i = 0, . . . ,m− 1. (53)

As explained after (48), the product in (53) is1 if l = i
(product over∅) and 0 otherwise. Thus, the summation in
(53) can be reduced to just one term,l = i, and

x̃2i =
s̃2i

ψ2i
, i = 0, . . . ,m− 1. (54)

Combining the three cases (51), (52), and (54) yields

x̃j =















∑m−1
l=0 s̃2l

PCl
(1)−PCl

(0)

ψ
2l

, j = 0,
s̃j

ψj
, j ∈ {1, 2, . . . , 2m−1}

0, otherwise

which satisfies (43) and (44). This completes the proof of the
“only if” part.

Remark 3:Only (43) depends on the input distribution, not
(44). In view of Theorem 9, the only difference between FOO
constellations with uniform and nonuniform distributionslies
in x̃0. The final theorem gives this statement a more intuitive
interpretation.

Theorem 11:The constellation[X,P] is FOO if and only if
both the following conditions hold:

µ = 0 (55)

x̃j = 0, ∀j /∈ {0} ∪ {1, 2, 4, . . . ,M/2}. (56)

Proof: We wish to prove that if (44) (or equivalently (56))
holds, then (43) and (55) are equivalent.

For any constellation[X,P], the meanµ = s̃0, whereS̃ is
the HT ofS = X̊. This follows from Theorem 8 and (30). The
meanµ can be calculated by lettingi = 0 in (20) and (22) as

µ = ψ0

M−1
∑

i=0

x̃i

m−1
∏

k=0
ni,k=1

(PCk
(0)− PCk

(1)) (57)

whereψ0 = 1.
In this theorem, we are only interested in constellations that

satisfy (44) or equivalently (56). For such constellations, the
sum in (57) includes at mostm+ 1 nonzero terms, namely,

µ = x̃0 +
m−1
∑

l=0

x̃2l (PCl
(0)− PCl

(1)) .

This expression makes (43) and (55) equivalent.
Based on Theorem 9, the result in Theorem 11 can be

understood as follows. If a constellation with a uniform input
distribution is FOO, it will still be FOO for any other input
distribution b provided that the input alphabet is translated
to be zero mean. In view of the geometrical interpretation of
Theorem 9 given in [21, Th. 12], the result in Theorem 11
also states that a constellation is FOO if and only if its input
alphabet is a linear projection of a hypercubeand it has zero
mean.

We also note that the zero-mean condition in Theorem 11
is the same that guarantees FOO for the CM-MI [21, Foot-
note 12]3. This implies that the only difference between FOO
constellations for the CM-MI and the BICM-GMI lies on the
extra constraint on the input alphabet to be a linear projection
of a hypercube.

C. Numerical Examples

In this subsection we give numerical examples to illustrate
the analytical results presented in this paper.

3The parameterα for the CM-MI is [21, Th. 7]α = log2 e(1−‖µ‖2/Es).
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Fig. 10. The FOO constellations[X′

8AMPM,P5] (black circles) and
[X̊′

8AMPM,U3] (white circles).
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Fig. 11. The constellations[X8AMPM,P6] (black circles) and[X̊8AMPM,U3]
(white circles). They both have zero mean and look like cubes, which indicates
that they are FOO.

Example 6:Consider the so-called 8-AMPM alphabet [30]

X8AMPM =

[

−1 1 −3 −1 1 3 −1 1
0 −2 0 −2 2 0 2 0

]T

(58)

which corresponds to a projected hypercube. The constellation
[X8AMPM,P] was shown to be FOO forP = U3 in [21,
Example 4]. In view of Theorem 11, it is FOO for anyP
if it has zero mean. Using (58) and (6) in (33), we find (after
some algebra) that

µ =

[

1 + 2 (PC1
(0)− PC0

(0)− PC2
(0))

2 (PC0
(0)− PC2

(0))

]T

. (59)

For example, the bit probabilitiesb5 = [0.40, 0.55, 0.60]
give an input distributionP5 for which the mean (59) is
µ = [0.10,−0.40]. We define another alphabetX′

8AMPM by
subtractingµ from each element inX8AMPM. Fig. 10 shows the
translated constellation[X′

8AMPM,P5] along with[X̊′
8AMPM,U3],

whereX̊′
8AMPM is the transform ofX′

8AMPM for the distribution
P5. They are both zero-mean projected hypercubes and thus
FOO according to Theorem 11. This can be observed from
the BICM-GMI curve for[X′

8AMPM,P5] in Fig. 12.
The exemplified method holds in full generality: Any alpha-

bet that is FOO with a uniform input distribution is FOO also
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Fig. 12. BICM-GMI for the four FOO constellations in Figs. 10and 11.
The SL is shown with a white circle.

with an arbitrary nonuniform distribution, if it is translated to
zero mean. Furthermore,all nonuniform FOO constellations
can be constructed in this manner.

For certain distributions, the mean (59) is zero without
translation. Specifically,µ = 0 if and only if

PC0
(0) = PC2

(0) = PC1
(0)/2 + 1/4. (60)

Clearly, the uniform case (PC0
(0) = PC1

(0) = PC2
(0) = 1/2)

analyzed in [21] fulfills (60). More interestingly, when any
other vector of bit probabilities fulfilling (60) is used, the
resulting constellation will be FOO. This is the case for in-
stance withb6 = [0.70, 0.90, 0.70]. The obtained constellation,
denoted by[X8AMPM,P6] is illustrated in Fig. 11 along with
its transform[X̊8AMPM,U3]. Graphically, both alphabets look
like cubes, although viewed from different angles, which is
precisely what Theorems 9 and 11 predict.

In Fig. 12, we show the BICM-GMI for the zero-mean
constellations[X′

8AMPM,P5] and [X8AMPM,P6] as well as for
the constellations[X̊′

8AMPM,U3] and [X̊8AMPM,U3]. As ex-
pected, all the GMIs converge at the SL for low SNR. For
these two cases, the transformed alphabets with uniform input
distributions give larger GMI for all SNRs compared to the
corresponding nonuniform ones. This is however not always
the case, cf. Fig. 7 withP2.

Example 7:M -PAM alphabets have been shown to be FOO
if the NBC is used with a uniform input distribution, i.e, the
constellation[XPAM,Um] with XPAM = [−(M − 1),−(M −
3), . . . ,M − 1] is FOO [18] [21, Th. 14]. In this example,
we study the first-order behavior of the 8-PAM alphabet
X′

PAM = [−7, 7,−1, 1,−5, 5,−3, 3], where the order of the
points represents the BRGC. The constellation[X′

PAM,P] is
known not to be FOO forU3 [17, Th. 3].

The BICM-GMI of X′
PAM is shown in Fig. 13 for the

set of bit probabilitiesb7 = [0.5, p, p] for different values
of p. For p = 0.5, the uniform distribution is obtained.
As p decreases, the Gray-labeled constellation approaches a
zero-mean binary alphabet, which is FOO [13, Fig. 2] [21,
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Fig. 13. The BICM-GMI for the 8-PAM alphabetX′

PAM labeled by the BRGC
with uniform input distribution and bit probabilitiesb7 = [0.5, p, p] for
different values ofp. The constellations approach a binary FOO constellation
as p → 0. The NBC-labeled 8-PAM alphabetXPAM, although FOO with a
uniform distribution, is considerably weaker thanX′

PAM for a wide range of
SNRs.

Fig. 3 (b)]. Fig. 13 illustrates the tradeoff between the low- and
high-SNR regimes: The SL can be approached by decreasing
p, but this causes a decrease in GMI in the high-SNR regime.
Alternatively, the SL can be attained by switching from the
BRGC to the NBC, but this also comes with a heavy penalty
at higher SNRs.

V. CONCLUSIONS

There exists a closed-form mapping between any probabilis-
tically shaped constellation and a constellation with uniform
input distribution, such that the two systems have the same
low-SNR first-order behavior (Definition 3 and Theorem 8).
Thus, the combination of probabilistic and geometric shaping
is equivalent to pure geometric shaping at low SNR.

We are particularly interested in BICM systems that attain
the SL −1.59 dB at asymptotically low SNR, i.e., in FOO
constellations. Somewhat disappointingly, the set of proba-
bilistically shaped FOO constellation is no larger than theset
of FOO constellations with uniform distributions, disregarding
translations of the whole input alphabet. Both sets can be fully
characterized as the set of linear projections of a hypercube,
translated to have zero mean for the considered input distribu-
tion (Theorems 9 and 10; cf. Figs. 10 and 11). Although non-
FOO constellations for BICM can be improved by probabilistic
shaping (Fig. 13), it is impossible to make them FOO except in
degenerate cases (by setting some probabilities equal to zero).

APPENDIX

PROPERTIES OF THETRANSFORM

In this Appendix, some theoretical properties of the new
transform defined in Section II-E are proved. In the first
section, the “sum-product lemma” is established, which will
be used extensively throughout the appendix. In the following
two sections, Lemma 1 and Theorem 4 are proved.

A. The Sum-Product Lemma

Many properties of NBC-labeled constellations and their
transforms can be expressed as the sum of products of certain
functions, where each function depends on one bit position.
Such expressions, which occur frequently in the two subse-
quent sections, can be resolved using this general lemma.

Lemma 12:Let fk,u for k = 0, . . . ,m − 1 andu ∈ B be
any real numbers. Then

M−1
∑

i=0

m−1
∏

k=0

fk,ni,k
=

m−1
∏

k=0

(fk,0 + fk,1).

Proof: A summation overi = 0, . . . , 2m−1 is equivalent
to m sums overik ∈ B, wherek = 0, . . . ,m − 1 and i =
i0 + 2i1 + · · ·+ 2m−1im−1. With this notation,ni,k = ik and

M−1
∑

i=0

m−1
∏

k=0

fk,ni,k
=
∑

i0∈B

∑

i1∈B

· · ·
∑

im−1∈B

m−1
∏

k=0

fk,ik

=
∑

i0∈B

∑

i1∈B

· · ·
∑

im−1∈B

f0,i0f1,i1 · · · fm−1,im−1

=
∑

i0∈B

f0,i0
∑

i1∈B

f1,i1 · · ·
∑

im−1∈B

fm−1,im−1

=
m−1
∏

k=0

∑

ik∈B

fk,ik .

B. The Transform Coefficients

Lemma 1, which lists two fundamental properties of the
transform coefficientsgi,j , was given in Section II-E.

Proof of Lemma 1:The two parts of Lemma 1 will now
be proved separately. First, the definition ofgi,j in (13) yields

M−1
∑

i=0

gi,lgi,j =

M−1
∑

i=0

m−1
∏

k=0

[

(−1)n̄i,knl,k

√

PCk
(0)

+ (−1)ni,kn̄l,k

√

PCk
(1)
]

·
[

(−1)n̄i,knj,k

√

PCk
(0)

+ (−1)ni,kn̄j,k

√

PCk
(1)
]

=

M−1
∑

i=0

m−1
∏

k=0

[

(−1)n̄i,k(nl,k+nj,k)PCk
(0)

+ (−1)n̄i,knl,k+ni,kn̄j,k

√

PCk
(0)PCk

(1)

+ (−1)ni,kn̄l,k+n̄i,knj,k

√

PCk
(0)PCk

(1)

+ (−1)ni,k(n̄l,k+n̄j,k)PCk
(1)
]

=
M−1
∑

i=0

m−1
∏

k=0

(−1)ni,k(nl,k+nj,k)

·
[

(−1)nl,k+nj,kPCk
(0) + PCk

(1)

+ (−1)ni,k [(−1)nl,k + (−1)nj,k ]
√

PCk
(0)PCk

(1)
]
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where the last equality follows by repeatedly using the iden-
tities ū = 1− u and (−1)u = (−1)−u for u ∈ B. Lemma 12
now yields

M−1
∑

i=0

gi,lgi,j =

m−1
∏

k=0

[

(−1)nl,k+nj,kPCk
(0) + PCk

(1)

+ [(−1)nl,k + (−1)nj,k ]
√

PCk
(0)PCk

(1)

+ (−1)nl,k+nj,k

(

(−1)nl,k+nj,kPCk
(0) + PCk

(1)

− [(−1)nl,k + (−1)nj,k ]
√

PCk
(0)PCk

(1)
)]

=

m−1
∏

k=0

[

(

(−1)nl,k+nj,k + 1
)

PCk
(0)

+
(

1 + (−1)nl,k+nj,k
)

PCk
(1)

+ [(−1)nl,k + (−1)nj,k − (−1)nl,k − (−1)nj,k ]

·
√

PCk
(0)PCk

(1)
]

=

m−1
∏

k=0

(

1 + (−1)nl,k+nj,k
)

(61)

where the last step follows becausePCk
(0) + PCk

(1) = 1.
The factors in (61) are either2 or 0, depending on whether
nl,k = nj,k or nl,k 6= nj,k for the particular bit positionk.
Thus,

∑M−1
i=0 gi,lgi,j is either2m = M or 0, depending on

whetherl andj haveall bits equal or not. This completes the
proof of (14).

To prove the second part of Lemma 1, which is (15), we
observe from (8) and (13) that

M−1
∑

i=0

hl,igi,j =

M−1
∑

i=0

m−1
∏

k=0

(−1)nl,kni,k

·
m−1
∏

k=0

[

(−1)n̄i,knj,k

√

PCk
(0) + (−1)ni,kn̄j,k

√

PCk
(1)
]

=

M−1
∑

i=0

m−1
∏

k=0

φk,ni,k
(62)

where

φk,u , (−1)unl,k+ūnj,k

√

PCk
(0)

+ (−1)unl,k+un̄j,k

√

PCk
(1).

Intending to apply Lemma 12 to (62), we first calculate the
quantity

φk,0 + φk,1 = (−1)nj,k

√

PCk
(0) +

√

PCk
(1)

+ (−1)nl,k

√

PCk
(0) + (−1)nl,k+n̄j,k

√

PCk
(1)

for k = 0, . . . ,m − 1. For reasons that will soon become
clear, we extract a common factor(−1)nj,knl,k from all terms,
obtaining

φk,0 + φk,1 = (−1)nj,knl,k

·
[

(

(−1)nj,kn̄l,k + (−1)n̄j,knl,k
)
√

PCk
(0)

+
(

(−1)nj,knl,k + (−1)n̄j,kn̄l,k
)
√

PCk
(1)
]

.

The coefficient in front of
√

PCk
(0) is 2 if nj,k = nl,k and

0 otherwise. Similarly, the coefficient in front of
√

PCk
(1)

is 0 if nj,k = nl,k and 2 otherwise. Thus, for everyk, the
expression depends on eitherPCk

(0) or PCk
(1) but not both,

namely,

φk,0 + φk,1 =

{

(−1)nj,knl,k · 2
√

PCk
(0), nj,k = nl,k

(−1)nj,knl,k · 2
√

PCk
(1), nj,k 6= nl,k

= 2(−1)nj,knl,k

√

PCk
(nj,k ⊕ nl,k)

= 2(−1)nj,knl,k

√

PCk
(nj⊕l,k) (63)

according to (5).
Using (63), we are now ready to apply Lemma 12 to (62),

which yields
M−1
∑

i=0

hi,lgi,j =

m−1
∏

k=0

2(−1)nj,knl,k

√

PCk
(nj⊕l,k).

Applying (6) and (8), we obtain finally
M−1
∑

i=0

hi,lgi,j =M

m−1
∏

k=0

(−1)nj,knl,k ·
m−1
∏

k=0

√

PCk
(nj⊕l,k)

=Mhj,l
√

Pj⊕l

which completes the proof of (15).

C. Two Consecutive Transforms

Theorem 4, which characterizes the vectors obtained by
applying the new transform and the HT sequentially to a given
alphabet, was given in Section II-E.

Proof of Theorem 4:To prove (20), we first writẽS as a
function ofX using (7) and (12), as illustrated in Fig. 2. For
i = 0, . . . ,M − 1,

s̃i =
1

M

M−1
∑

j=0

sjhi,j

=
1

M

M−1
∑

j=0

hi,j

M−1
∑

l=0

xlgj,l
√

Pl

=
1

M

M−1
∑

l=0

xl
√

Pl

M−1
∑

j=0

hi,jgj,l

=

M−1
∑

l=0

xlhl,i
√

PlPi⊕l

using (15) for the last equality. To obtaiñS as a function of
X̃, we expressxl in terms of its inverse HT in (11), to obtain

s̃i =
M−1
∑

l=0

hl,i
√

PlPi⊕l

M−1
∑

j=0

x̃jhj,l

=

M−1
∑

j=0

x̃jηi,j (64)

where

ηi,j ,

M−1
∑

l=0

hl,ihj,l
√

PlPi⊕l.
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The coefficientηi,j can be expressed using (8) and (5) as

ηi,j =

M−1
∑

l=0

m−1
∏

k=0

(−1)nl,k(ni,k+nj,k)

·
√

PCk
(nl,k)PCk

(ni,k ⊕ nl,k) (65)

=
m−1
∏

k=0

[

√

PCk
(0)PCk

(ni,k)

+ (−1)ni,k+nj,k

√

PCk
(1)PCk

(n̄i,k)

]

(66)

where to pass from (65) to (66) we used Lemma 12 with
fk,u = (−1)u(ni,k+nj,k)

√

PCk
(u)PCk

(ni,k ⊕ u). Depending
on the value ofni,k, this product can be partitioned into two
subproducts

ηi,j =

m−1
∏

k=0
ni,k=0

[PCk
(0) + (−1)nj,kPCk

(1)]

·
m−1
∏

k=0
ni,k=1

[

√

PCk
(0)PCk

(1) + (−1)n̄j,k

√

PCk
(1)PCk

(0)
]

= ψi

m−1
∏

k=0
ni,k=0

[PCk
(0) + (−1)nj,kPCk

(1)]

·
m−1
∏

k=0
ni,k=1

[

1 + (−1)n̄j,k

2

]

(67)

making use ofψi defined in (22). Since the two factors in (67)
depend onnj,k as

PCk
(0) + (−1)nj,kPCk

(1) =

{

1, nj,k = 0,

PCk
(0)− PCk

(1), nj,k = 1,

1 + (−1)n̄j,k

2
=

{

0, nj,k = 0,

1, nj,k = 1,

they can be expanded into four factors as

ηi,j = ψi

m−1
∏

k=0
ni,k=0
nj,k=0

1 ·
m−1
∏

k=0
ni,k=0
nj,k=1

(PCk
(0)− PCk

(1))

·
m−1
∏

k=0
ni,k=1
nj,k=0

0 ·
m−1
∏

k=0
ni,k=1
nj,k=1

1. (68)

The two products of ones can be omitted. The product of
zeros may look strange but is perfectly legitimate; its value is
by definition 1 if the set{k : [ni,k, nj,k] = [1, 0]} is empty
and 0 otherwise. Furthermore, sincePCk

(0)− PCk
(nj,k) = 0

for all k in this set, the second and third factors of (68) can
be merged into

ηi,j = ψi

m−1
∏

k=0
ni,k 6=nj,k

(PCk
(0)− PCk

(nj,k)) (69)

which together with (64) completes the proof of (20).
To prove the reverse relationship (21), we first multiply both

sides of (64) withhi,M−1ηl,i/(ψiψl) and sum overi:

M−1
∑

i=0

s̃i
hi,M−1ηl,i
ψiψl

=
M−1
∑

j=0

x̃j

M−1
∑

i=0

ηi,j
hi,M−1ηl,i
ψiψl

. (70)

The Hadamard coefficienthi,M−1 can be factorized using (8)
with nM−1,k = 1, ∀k as

hi,M−1 =

m−1
∏

k=0

(−1)ni,k . (71)

Using (71) in (70) and replacing the ratiosηi,j/ψi andηl,i/ψl
with their factorizations according to (69), we obtain for the
inner sum on the right-hand side of (70)

M−1
∑

i=0

hi,M−1
ηi,j
ψi

ηl,i
ψl

=

M−1
∑

i=0

m−1
∏

k=0

φk,ni,k
(72)

where

φk,u ,































(−1)u, u = nj,k = nl,k,

(−1)u(PCk
(0)− PCk

(u)), u = nj,k 6= nl,k,

(−1)u(PCk
(0)− PCk

(nj,k)), u = nl,k 6= nj,k,

(−1)u(PCk
(0)− PCk

(nj,k))(PCk
(0)− PCk

(u)),

u 6= nj,k = nl,k.

The fourth case is always0, because eitherPCk
(0)−PCk

(nj,k)
or PCk

(0) − PCk
(u) is 0. Furthermore, the second and third

cases can be combined into

φk,u ,











(−1)u, u = nj,k = nl,k,

(−1)u(PCk
(0)− PCk

(nj,k)), nj,k 6= nl,k,

0, u 6= nj,k = nl,k.

(73)

We wish to apply Lemma 12 to the right-hand side of (72).
In order to do so, we first calculate from (73)

φk,0 + φk,1 =



















1 + 0, nj,k = nl,k = 0,

(PCk
(0)− PCk

(nj,k))

−(PCk
(0)− PCk

(nj,k)), nj,k 6= nl,k,

0− 1, nj,k = nl,k = 1

=

{

(−1)nj,k , nj,k = nl,k,

0, nj,k 6= nl,k.
(74)

Now by Lemma 12, (72) can be expressed as

M−1
∑

i=0

hi,M−1
ηi,j
ψi

ηl,i
ψl

=
m−1
∏

k=0

(φk,0 + φk,1) .

By (74), this product will be nonzero only ifj andl match in
all bit positionsk = 0, . . . ,m− 1, i.e., if j = l. Thus, again
utilizing (71),

M−1
∑

i=0

hi,M−1
ηi,j
ψi

ηl,i
ψl

=

{

∏m−1
k=0 (−1)nl,k , j = l,

0, j 6= l,

=

{

hl,M−1, j = l,

0, j 6= l.
(75)
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Finally, we combine (70) and (75) into

M−1
∑

i=0

s̃i
hi,M−1ηl,i
ψiψl

= hl,M−1x̃l. (76)

Dividing both sides byhl,M−1 yields on the left-hand side
the coefficenthi,M−1ηl,i/(hl,M−1ψl), which can be expressed
using (8) and (69) as

hi,M−1ηl,i
hl,M−1ψl

=

m−1
∏

k=0

(−1)ni,k−nl,k

·
m−1
∏

k=0
nl,k 6=ni,k

(PCk
(0)− PCk

(ni,k))

=

m−1
∏

k=0
ni,k 6=nl,k

(−1) (PCk
(0)− PCk

(ni,k)) .

This expression, substituted into (76), completes the proof of
(21).
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[17] A. Martinez, A. Guillén i Fàbregas, and G. Caire, “Bit-interleaved coded
modulation in the wideband regime,”IEEE Trans. Inf. Theory, vol. 54,
no. 12, pp. 5447–5455, Dec. 2008.

[18] C. Stierstorfer and R. F. H. Fischer, “Asymptotically optimal mappings
for BICM with M -PAM and M2-QAM,” IET Electronics Letters,
vol. 45, no. 3, pp. 173–174, Jan. 2009.

[19] A. Alvarado, E. Agrell, A. Guillén i Fàbregas, and A. Martinez, “Cor-
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