25 research outputs found

    Constant-Weight Gray Codes for Local Rank Modulation

    Get PDF
    We consider the local rank-modulation scheme in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. Local rank- modulation is a generalization of the rank-modulation scheme, which has been recently suggested as a way of storing information in flash memory. We study constant-weight Gray codes for the local rank- modulation scheme in order to simulate conventional multi-level flash cells while retaining the benefits of rank modulation. We provide necessary conditions for the existence of cyclic and cyclic optimal Gray codes. We then specifically study codes of weight 2 and upper bound their efficiency, thus proving that there are no such asymptotically-optimal cyclic codes. In contrast, we study codes of weight 3 and efficiently construct codes which are asymptotically-optimal. We conclude with a construction of codes with asymptotically-optimal rate and weight asymptotically half the length, thus having an asymptotically-optimal charge difference between adjacent cells

    Constant-Weight Gray Codes for Local Rank Modulation

    Full text link
    We consider the local rank-modulation scheme in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The local rank-modulation, as a generalization of the rank-modulation scheme, has been recently suggested as a way of storing information in flash memory. We study constant-weight Gray codes for the local rank-modulation scheme in order to simulate conventional multi-level flash cells while retaining the benefits of rank modulation. We provide necessary conditions for the existence of cyclic and cyclic optimal Gray codes. We then specifically study codes of weight 2 and upper bound their efficiency, thus proving that there are no such asymptotically-optimal cyclic codes. In contrast, we study codes of weight 3 and efficiently construct codes which are asymptotically-optimal

    Constant-weight Gray codes for local rank modulation

    Full text link

    On a construction for constant-weight Gray codes for local rank modulation

    Get PDF
    We consider the local rank-modulation scheme in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The local rank-modulation, as a generalization of the rank-modulation scheme, has been recently suggested as a way of storing information in flash memory. We study constant-weight Gray codes for the local rank-modulation scheme in order to simulate conventional multilevel flash cells while retaining the benefits of rank modulation. We describe a construction for a codes of rate tending to 1

    Compressed Encoding for Rank Modulation

    Get PDF
    Rank modulation has been recently proposed as a scheme for storing information in flash memories. While rank modulation has advantages in improving write speed and endurance, the current encoding approach is based on the "push to the top" operation that is not efficient in the general case. We propose a new encoding procedure where a cell level is raised to be higher than the minimal necessary subset -instead of all - of the other cell levels. This new procedure leads to a significantly more compressed (lower charge levels) encoding. We derive an upper bound for a family of codes that utilize the proposed encoding procedure, and consider code constructions that achieve that bound for several special cases

    Generalized Gray Codes for Local Rank Modulation

    Get PDF
    We consider the local rank-modulation scheme in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. Local rank-modulation is a generalization of the rank-modulation scheme, which has been recently suggested as a way of storing information in flash memory. We study Gray codes for the local rank-modulation scheme in order to simulate conventional multi-level flash cells while retaining the benefits of rank modulation. Unlike the limited scope of previous works, we consider code constructions for the entire range of parameters including the code length, sliding window size, and overlap between adjacent windows. We show our constructed codes have asymptotically-optimal rate. We also provide efficient encoding, decoding, and next-state algorithms.Comment: 7 pages, 1 figure, shorter version was submitted to ISIT 201
    corecore