We consider the local rank-modulation scheme in which a sliding window going
over a sequence of real-valued variables induces a sequence of permutations.
The local rank-modulation, as a generalization of the rank-modulation scheme,
has been recently suggested as a way of storing information in flash memory.
We study constant-weight Gray codes for the local rank-modulation scheme in
order to simulate conventional multi-level flash cells while retaining the
benefits of rank modulation. We provide necessary conditions for the existence
of cyclic and cyclic optimal Gray codes. We then specifically study codes of
weight 2 and upper bound their efficiency, thus proving that there are no such
asymptotically-optimal cyclic codes. In contrast, we study codes of weight 3
and efficiently construct codes which are asymptotically-optimal