8 research outputs found

    Matroid and Knapsack Center Problems

    Full text link
    In the classic kk-center problem, we are given a metric graph, and the objective is to open kk nodes as centers such that the maximum distance from any vertex to its closest center is minimized. In this paper, we consider two important generalizations of kk-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows: 1. We consider the matroid center problem in which the centers are required to form an independent set of a given matroid. We show this problem is NP-hard even on a line. We present a 3-approximation algorithm for the problem on general metrics. We also consider the outlier version of the problem where a given number of vertices can be excluded as the outliers from the solution. We present a 7-approximation for the outlier version. 2. We consider the (multi-)knapsack center problem in which the centers are required to satisfy one (or more) knapsack constraint(s). It is known that the knapsack center problem with a single knapsack constraint admits a 3-approximation. However, when there are at least two knapsack constraints, we show this problem is not approximable at all. To complement the hardness result, we present a polynomial time algorithm that gives a 3-approximate solution such that one knapsack constraint is satisfied and the others may be violated by at most a factor of 1+ϵ1+\epsilon. We also obtain a 3-approximation for the outlier version that may violate the knapsack constraint by 1+ϵ1+\epsilon.Comment: A preliminary version of this paper is accepted to IPCO 201

    Constant Approximation for kk-Median and kk-Means with Outliers via Iterative Rounding

    Full text link
    In this paper, we present a new iterative rounding framework for many clustering problems. Using this, we obtain an (α1+ϵ7.081+ϵ)(\alpha_1 + \epsilon \leq 7.081 + \epsilon)-approximation algorithm for kk-median with outliers, greatly improving upon the large implicit constant approximation ratio of Chen [Chen, SODA 2018]. For kk-means with outliers, we give an (α2+ϵ53.002+ϵ)(\alpha_2+\epsilon \leq 53.002 + \epsilon)-approximation, which is the first O(1)O(1)-approximation for this problem. The iterative algorithm framework is very versatile; we show how it can be used to give α1\alpha_1- and (α1+ϵ)(\alpha_1 + \epsilon)-approximation algorithms for matroid and knapsack median problems respectively, improving upon the previous best approximations ratios of 88 [Swamy, ACM Trans. Algorithms] and 17.4617.46 [Byrka et al, ESA 2015]. The natural LP relaxation for the kk-median/kk-means with outliers problem has an unbounded integrality gap. In spite of this negative result, our iterative rounding framework shows that we can round an LP solution to an almost-integral solution of small cost, in which we have at most two fractionally open facilities. Thus, the LP integrality gap arises due to the gap between almost-integral and fully-integral solutions. Then, using a pre-processing procedure, we show how to convert an almost-integral solution to a fully-integral solution losing only a constant-factor in the approximation ratio. By further using a sparsification technique, the additive factor loss incurred by the conversion can be reduced to any ϵ>0\epsilon > 0

    Improved Approximation Algorithms for Matroid and Knapsack Median Problems and Applications

    Get PDF
    We consider the matroid median problem, wherein we are given a set of facilities with opening costs and a matroid on the facility-set, and clients with demands and connection costs, and we seek to open an independent set of facilities and assign clients to open facilities so as to minimize the sum of the facility-opening and client-connection costs. We give a simple 8-approximation algorithm for this problem based on LP-rounding, which improves upon the 16-approximation by Krishnaswamy et al. We illustrate the power and versatility of our techniques by deriving: (a) an 8-approximation for the two-matroid median problem, a generalization of matroid median that we introduce involving two matroids; and (b) a 24-approximation algorithm for matroid median with penalties, which is a vast improvement over the 360-approximation obtained by Krishnaswamy et al. We show that a variety of seemingly disparate facility-location problems considered in the literature -- data placement problem, mobile facility location, k-median forest, metric uniform minimum-latency UFL -- in fact reduce to the matroid median or two-matroid median problems, and thus obtain improved approximation guarantees for all these problems. Our techniques also yield an improvement for the knapsack median problem

    Constant Factor Approximation Algorithm for the Knapsack Median Problem

    No full text
    corecore