11,100 research outputs found

    Trade & Cap: A Customer-Managed, Market-Based System for Trading Bandwidth Allowances at a Shared Link

    Full text link
    We propose Trade & Cap (T&C), an economics-inspired mechanism that incentivizes users to voluntarily coordinate their consumption of the bandwidth of a shared resource (e.g., a DSLAM link) so as to converge on what they perceive to be an equitable allocation, while ensuring efficient resource utilization. Under T&C, rather than acting as an arbiter, an Internet Service Provider (ISP) acts as an enforcer of what the community of rational users sharing the resource decides is a fair allocation of that resource. Our T&C mechanism proceeds in two phases. In the first, software agents acting on behalf of users engage in a strategic trading game in which each user agent selfishly chooses bandwidth slots to reserve in support of primary, interactive network usage activities. In the second phase, each user is allowed to acquire additional bandwidth slots in support of presumed open-ended need for fluid bandwidth, catering to secondary applications. The acquisition of this fluid bandwidth is subject to the remaining "buying power" of each user and by prevalent "market prices" – both of which are determined by the results of the trading phase and a desirable aggregate cap on link utilization. We present analytical results that establish the underpinnings of our T&C mechanism, including game-theoretic results pertaining to the trading phase, and pricing of fluid bandwidth allocation pertaining to the capping phase. Using real network traces, we present extensive experimental results that demonstrate the benefits of our scheme, which we also show to be practical by highlighting the salient features of an efficient implementation architecture.National Science Foundation (CCF-0820138, CSR-0720604, EFRI-0735974, CNS-0524477, and CNS-0520166); Universidad Pontificia Bolivariana and COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y la TecnologĂ­a “Francisco Jose ́ de Caldas”

    Weighted Max-Min Resource Allocation for Frequency Selective Channels

    Full text link
    In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers. Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the resource allocation problem in the mixed services scenario where certain users have a required rate, while the others have flexible rate requirements. The solution is relevant to many communication systems that are limited by a power spectral density mask constraint such as WiMax, Wi-Fi and UWB

    Statistical Multiplexing and Traffic Shaping Games for Network Slicing

    Full text link
    Next generation wireless architectures are expected to enable slices of shared wireless infrastructure which are customized to specific mobile operators/services. Given infrastructure costs and the stochastic nature of mobile services' spatial loads, it is highly desirable to achieve efficient statistical multiplexing amongst such slices. We study a simple dynamic resource sharing policy which allocates a 'share' of a pool of (distributed) resources to each slice-Share Constrained Proportionally Fair (SCPF). We give a characterization of SCPF's performance gains over static slicing and general processor sharing. We show that higher gains are obtained when a slice's spatial load is more 'imbalanced' than, and/or 'orthogonal' to, the aggregate network load, and that the overall gain across slices is positive. We then address the associated dimensioning problem. Under SCPF, traditional network dimensioning translates to a coupled share dimensioning problem, which characterizes the existence of a feasible share allocation given slices' expected loads and performance requirements. We provide a solution to robust share dimensioning for SCPF-based network slicing. Slices may wish to unilaterally manage their users' performance via admission control which maximizes their carried loads subject to performance requirements. We show this can be modeled as a 'traffic shaping' game with an achievable Nash equilibrium. Under high loads, the equilibrium is explicitly characterized, as are the gains in the carried load under SCPF vs. static slicing. Detailed simulations of a wireless infrastructure supporting multiple slices with heterogeneous mobile loads show the fidelity of our models and range of validity of our high load equilibrium analysis

    Using Dedicated and Opportunistic Networks in Synergy for a Cost-effective Distributed Stream Processing Platform

    Full text link
    This paper presents a case for exploiting the synergy of dedicated and opportunistic network resources in a distributed hosting platform for data stream processing applications. Our previous studies have demonstrated the benefits of combining dedicated reliable resources with opportunistic resources in case of high-throughput computing applications, where timely allocation of the processing units is the primary concern. Since distributed stream processing applications demand large volume of data transmission between the processing sites at a consistent rate, adequate control over the network resources is important here to assure a steady flow of processing. In this paper, we propose a system model for the hybrid hosting platform where stream processing servers installed at distributed sites are interconnected with a combination of dedicated links and public Internet. Decentralized algorithms have been developed for allocation of the two classes of network resources among the competing tasks with an objective towards higher task throughput and better utilization of expensive dedicated resources. Results from extensive simulation study show that with proper management, systems exploiting the synergy of dedicated and opportunistic resources yield considerably higher task throughput and thus, higher return on investment over the systems solely using expensive dedicated resources.Comment: 9 page
    • 

    corecore