595 research outputs found

    Detection Of Insider Attacks In Block Chain Network Using The Trusted Two Way Intrusion Detection System

    Full text link
    For data privacy, system reliability, and security, Blockchain technologies have become more popular in recent years. Despite its usefulness, the blockchain is vulnerable to cyber assaults; for example, in January 2019 a 51% attack on Ethereum Classic successfully exposed flaws in the platform's security. From a statistical point of view, attacks represent a highly unusual occurrence that deviates significantly from the norm. Blockchain attack detection may benefit from Deep Learning, a field of study whose aim is to discover insights, patterns, and anomalies within massive data repositories. In this work, we define an trusted two way intrusion detection system based on a Hierarchical weighed fuzzy algorithm and self-organized stacked network (SOSN) deep learning model, that is trained exploiting aggregate information extracted by monitoring blockchain activities. Here initially the smart contract handles the node authentication. The purpose of authenticating the node is to ensure that only specific nodes can submit and retrieve the information. We implement Hierarchical weighed fuzzy algorithm to evaluate the trust ability of the transaction nodes. Then the transaction verification step ensures that all malicious transactions or activities on the submitted transaction by self-organized stacked network deep learning model. The whole experimentation was carried out under matlab environment. Extensive experimental results confirm that our suggested detection method has better performance over important indicators such as Precision, Recall, F-Score, overhead

    Aid Nexus : A Blockchain Based Financial Distribution System

    Full text link
    Blockchain technology has emerged as a disruptive force with transformative potential across numerous industries, promising efficient and automated solutions that can revolutionize traditional systems. By leveraging decentralized ledger systems, blockchain offers enhanced security, transparency, and transaction verification without the need for intermediaries. The finance sector is exploring blockchain-based solutions for payments, remittances, lending, and investments, while healthcare adopts the technology for medical record keeping, supply chain tracking, and data management. Similarly, supply chain management benefits from blockchain's ability to enhance transparency, traceability, and accountability from raw materials to finished products. Other sectors, including real estate, energy, and government, are also investigating blockchain-based solutions to improve efficiency, security, and transparency. Furthermore, smart contracts within the blockchain enable process automation, reducing manual intervention in distribution workflows. AidNeux, a consortium-based blockchain DApp, reimagines the distribution of financial assistance by addressing inefficiencies and opaqueness. Using smart contracts ensures the security and directness of money transfers. Its robust digital identity verification and real-time auditability reduce fraud risks and strengthen accountability, thereby presenting a scalable, transparent solution to problems inherent to conventional financial aid systems

    Challenges in Blockchain as a Solution for IoT Ecosystem Threats and Access Control: A Survey

    Full text link
    The Internet of Things (IoT) is increasingly influencing and transforming various aspects of our daily lives. Contrary to popular belief, it raises security and privacy issues as it is used to collect data from consumers or automated systems. Numerous articles are published that discuss issues like centralised control systems and potential alternatives like integration with blockchain. Although a few recent surveys focused on the challenges and solutions facing the IoT ecosystem, most of them did not concentrate on the threats, difficulties, or blockchain-based solutions. Additionally, none of them focused on blockchain and IoT integration challenges and attacks. In the context of the IoT ecosystem, overall security measures are very important to understand the overall challenges. This article summarises difficulties that have been outlined in numerous recent articles and articulates various attacks and security challenges in a variety of approaches, including blockchain-based solutions and so on. More clearly, this contribution consolidates threats, access control issues, and remedies in brief. In addition, this research has listed some attacks on public blockchain protocols with some real-life examples that can guide researchers in taking preventive measures for IoT use cases. Finally, a future research direction concludes the research gaps by analysing contemporary research contributions

    D2Gen: A Decentralized Device Genome Based Integrity Verification Mechanism for Collaborative Intrusion Detection Systems

    Get PDF
    Collaborative Intrusion Detection Systems are considered an effective defense mechanism for large, intricate, and multilayered Industrial Internet of Things against many cyberattacks. However, while a Collaborative Intrusion Detection System successfully detects and prevents various attacks, it is possible that an inside attacker performs a malicious act and compromises an Intrusion Detection System node. A compromised node can inflict considerable damage on the whole collaborative network. For instance, when a malicious node gives a false alert of an attack, the other nodes will unnecessarily increase their security and close all of their services, thus, degrading the system’s performance. On the contrary, if the spurious node approves malicious traffic into the system, the other nodes would also be compromised. Therefore, to detect a compromised node in the network, this article introduces a device integrity check mechanism based on “Digital Genome.” In medical science, a genome refers to a set that contains all of the information needed to build and maintain an organism. Based on the same concept, the digital genome is computed over a device’s vital hardware, software, and other components. Hence, if an attacker makes any change in a node’s hardware and software components, the digital genome will change, and the compromised node will be easily detected. It is envisaged that the proposed integrity attestation protocol can be used in diverse Internet of Things and other information technology applications to ensure the legitimate operation of end devices. This study also proffers a comprehensive security and performance analysis of the proposed framework
    corecore