
Zayed University Zayed University

ZU Scholars ZU Scholars

All Works

10-4-2021

D2Gen: A Decentralized Device Genome Based Integrity D2Gen: A Decentralized Device Genome Based Integrity

Verification Mechanism for Collaborative Intrusion Detection Verification Mechanism for Collaborative Intrusion Detection

Systems Systems

Imran Makhdoom
National University of Sciences and Technology; University of Technology Sydney

Kadhim Hayawi
Zayed University

Mohammed Kaosar
Murdoch University

Sujith Samuel Mathew
Zayed University

Pin-Han Ho
University of Waterloo

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Makhdoom, Imran; Hayawi, Kadhim; Kaosar, Mohammed; Mathew, Sujith Samuel; and Ho, Pin-Han,
"D2Gen: A Decentralized Device Genome Based Integrity Verification Mechanism for Collaborative
Intrusion Detection Systems" (2021). All Works. 4612.
https://zuscholars.zu.ac.ae/works/4612

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/4612?utm_source=zuscholars.zu.ac.ae%2Fworks%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

D2Gen: A Decentralized Device Genome
based Integrity Verification Mechanism
for Collaborative Intrusion Detection
Systems
IMRAN MAKHDOOM1, (Member, IEEE), KADHIM HAYAWI 2, (Member, IEEE), MOHAMMED
KAOSAR3, (Senior Member, IEEE), SUJITH SAMUEL MATHEW4, PIN-HAN HO5, (Fellow,
IEEE)
1Faculty of Engineering and IT, University of Technology Sydney, NSW, Australia
2,4College of Technological Innovation, Zayed University, UAE
3Discipline of Information Technology, Murdoch University Australia
5University of Waterloo, Canada

Corresponding author: Kadhim Hayawi (e-mail: Abdul.Hayawi@zu.ac.ae).

This research is funded by Zayed University under the Cluster research grant R20140.

ABSTRACT Collaborative Intrusion Detection Systems are considered an effective defense mechanism for
large, intricate, and multilayered Industrial Internet of Things against many cyberattacks. However, while
a Collaborative Intrusion Detection System successfully detects and prevents various attacks, it is possible
that an inside attacker performs a malicious act and compromises an Intrusion Detection System node. A
compromised node can inflict considerable damage on the whole collaborative network. For instance, when
a malicious node gives a false alert of an attack, the other nodes will unnecessarily increase their security and
close all of their services, thus, degrading the system's performance. On the contrary, if the spurious node
approves malicious traffic into the system, the other nodes would also be compromised. Therefore, to detect
a compromised node in the network, this article introduces a device integrity check mechanism based on
“Digital Genome.” In medical science, a genome refers to a set that contains all of the information needed
to build and maintain an organism. Based on the same concept, the digital genome is computed over a
device's vital hardware, software, and other components. Hence, if an attacker makes any change in a node's
hardware and software components, the digital genome will change, and the compromised node will be
easily detected. It is envisaged that the proposed integrity attestation protocol can be used in diverse Internet
of Things and other information technology applications to ensure the legitimate operation of end devices.
This study also proffers a comprehensive security and performance analysis of the proposed framework.

INDEX TERMS Insider attacks, integrity check, collaborative intrusion detection system, device genome,
device security, blockchain, Internet of Things.

I. INTRODUCTION

The pervasiveness of the internet has widened the spec-
trum of connected real-world things and has also provided
promising opportunities to build robust industrial systems
and related applications. Correspondingly, the Industry 4.0
paradigm has witnessed significant changes by leveraging the
growing ubiquity of the Industrial Internet of Things (IIoT)
[1], [2], [3]. This integration has undoubtedly improved the
efficiency of processes, reduced spatio-temporal investments,
and bestowed faster return on investments. While this indus-

trial evolution has been extensively reviewed and studied [3],
[4], [5], there is a growing concern that the increased connec-
tivity of critical infrastructures such as thermal powerhouses,
electricity grids, hospitals, hotels, banking, and defense sys-
tems makes them vulnerable to numerous cyber-attacks [6],
[7], [8]. Resultantly, a hacker can hack into the end devices
and install malware or modify the software components.
Moreover, suppose an end device is physically compromised.
In that case, the attacker can also change the hardware
components, i.e., extend device memory, increase RAM,

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

alter processor speed, change network configuration, activate
or deactivate unauthorized ports or interfaces (e.g., JTAG,
UART), change I/O (input/output) pin configuration, etc.
Correspondingly, these software and hardware modifications
will affect the legitimate operation of the devices and the
security and privacy of user data. Besides, an unintentional
or unprovoked technical fault, hardware or software failure,
or human error can also cause an end device malfunction.

Furthermore, sophisticated cyber-attacks, including Black-
Energy Crimeware [9], Dragonfly-Group/Energetic Bear
[10], Mirai [11], and Stuxnet [12] are some testimonies to
the vulnerabilities of the critical infrastructure. These attacks
disrupted not only vital operations but also infringed sensitive
business and personal information. Moreover, in some cases,
there had been physical damage, and substantial financial loss
[12]. Also, there is no restriction on the type of device that
can be fully compromised; it may be an IoT sensor/actuator, a
Programmable Logic Controller (PLC), or a node of Collabo-
rative Intrusion Detection System (CIDS). Correspondingly,
some untrustworthy members of the CIDS may perform a
malicious act, thus introducing the possibility of an insider
attack [13], [14], [15]. Consequently, a compromised CIDS
node can inflict considerable damage on the whole collab-
orative network. Therefore, when this malicious node gives
false alerts of an attack, the other nodes may unnecessarily
increase their security and may close all of their services [16].
Similarly, if it approves malicious traffic into the system, the
other nodes would be compromised too.

Therefore, there is a need to develop a framework to verify
devices' integrity, especially IDS nodes. So that if an attacker
makes a change in the hardware, software, or configuration
of an IDS node, it can be detected and rectified.

II. RELATED WORK
As shown in Table.1 significant work has been done in the
past to verify the integrity of embedded devices based on
code, firmware, or memory attestation. For instance, [17]
introduced a Software-based Memory Attestation scheme
(SWATT) for embedded devices. The proposed solution de-
tects an embedded device with malicious code in its memory.
However, due to a challenge-response protocol, the verifica-
tion procedure is vulnerable to Rainbow [18] and Interference
attacks [19]. Moreover, the Time of Check to Time of Use
(TOCTTOU) [20] is also different. In addition, SWATT is
vulnerable to the rootkit-based attack that involves Return
Oriented Programming (ROP). The attackers use ROP as
a security exploit to control the call stack and manipulate
the flow of the trusted software running on the target ma-
chine. Resultantly, the attackers can execute malicious code
on the target system [21], [22]. Similarly, authors in [23]
presented a distributed, secret sharing, and majority voting-
based attestation scheme for IoT sensors. Being distributed,
the proposed solution prevents trust issues involving a single
trusted verifier. However, it is believed to be computation-
intensive and vulnerable to “Good Mouth” and “Bad Mouth”
attacks. Also, the TOCTTOU is different. Consequently, it is

susceptible to rootkit-based ROP attack [24]. Moreover, the
initialization of the attestation procedure is also speculative.

In another work [25], the researchers proposed a One-
way Memory Attestation Protocol (OMAP) for smart meters.
The scheme detects a malicious device without a challenge-
response protocol. However, in this scheme as well, the
initialization of the code attestation procedure is not clearly
defined, and the TOCTTOU is also different. Hence, it is
vulnerable to rootkit-based attacks [24]. Correspondingly,
[24] introduced One-way Code Attestation Protocol (OW-
CAP), an improved version of OMAP, for Wireless Sensor
Networks (WSN). Nonetheless, this work is limited to a
star network topology in which only a cluster head has the
responsibility of attesting and verifying a sensor node. In the
same way, researchers in [26] presented a blockchain-based
secure firmware update mechanism for embedded devices
in IoT. The framework protects against message authenti-
cation, confidentiality, replay, and integrity attacks. It also
replaces the client-server based firmware update protocol
with a blockchain-based decentralized scheme. However, it
also has certain limitations; The IoT node initiates a firmware
update message, but it is unclear when it should initiate the
process. Similarly, two processes of firmware verification run
in parallel, which will create unnecessary network traffic,
node operations, and increased energy consumption of end
devices. Moreover, it does not protect against node com-
promise attacks, in which an attacker, instead of tampering
with firmware, installs an executable malicious code in the
memory of the node to launch further attacks.

In a more recent work [27], the researchers introduced
a remote attestation strategy for control systems that com-
bines software attestation and control process validation. It
is a challenge-response based protocol that protects against
threats to the integrity of PLCs' logic code. It also prevents
replay attacks involving sensor readings. However, being a
challenge-response protocol, it is also assumed to be vul-
nerable to the Rainbow and Interference attacks. Similarly,
[28] proposed a technique to seek behavior transparency and
control for smart home IoT devices. The scheme detects
misbehaving devices by analyzing application layer network
flows between clients and servers. It enables transparency by
reporting which device exhibits what behaviors, when, and
how often. The authors claim that the proposed framework
effectively classifies behaviors of IoT devices. And these
behaviors may include heartbeat, firmware check, reporting,
and uploading audio or video recordings. However, there
is a possibility that a compromised device may input false
data to the network by exhibiting normal behavior like
Stuxnet [29]. Correspondingly, [30] presented “HEALED,”
a software-based remote attestation and disinfection scheme
for embedded devices. However, this solution protects only
against malware attacks.

Looking at some CIDS specific literature, [31] carried out
a survey of some Collaborative Intrusion Detection Networks
(CIDNs) and analyzed their robustness against insider at-
tacks. However, this work just listed down various insider at-

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: Comparison of Device Attestation Techniques

Existing
Solution

Reference Methodology Protections Offered Limitations

SWATT [17] Software-based
memory attestation
scheme

Detects an embedded
device with a malicious
code in its memory

Due to challenge-response
protocol, verification
procedure is vulnerable to
Rainbow and Interference
Attacks
TOCTTOU (Time of Check to
Time of Use) is different
Vulnerable to rootkit-based at-
tack (Return oriented pro-
gramming)

Distributed
software-based
attestation

[23] Secret sharing and
majority voting-based
memory attestation
scheme

Distributed attestation
scheme that protects
against single trusted
verifier

Computation intensive

Vulnerable to “Good Mouth,”
and “Bad Mouth” attacks
TOCTTOU is different
Initiation of attestation proce-
dure is speculative
Vulnerable to rootkit-based at-
tack

OMAP [25] One way memory attes-
tation protocol

Detects a malicious
node

Initialization of code attesta-
tion is speculative
TOCTTOU is different
Vulnerable to rootkit-based at-
tack

OWCAP [24] One way code attesta-
tion protocol for WSN

Detects a malicious
node based on memory
attestation

Limited to star network topol-
ogy

Blockchain-
based secure
firmware update

[26] Blockchain-based
firmware update
mechanism

Replaces client-server
based firmware update
with a distributed
technology

The time of initiation of
firmware update procedure is
not clearly defined

Protects against
message authentication,
confidentiality, replay,
and integrity attacks

Prone to increased network
traffic and energy consump-
tion

No protection against node
compromise attacks

PAtt [27] Performs attestation of
control systems based
on software attestation
and control process val-
idation

Detects threats to the in-
tegrity of PLCs' logic
code

A challenge-response based
protocol

HomeSnitch [28] Detects misbehaving
smart home devices by
analyzing application-
layer network flows
between clients and
servers

Provides transparency
and control over
smart home devices
by classifying their
behaviors

Vulnerable to a node compro-
mise attack, where the victim
may exhibit normal behavior
but input false data to the net-
work

Continued on next page

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1 – Continued from previous page
Existing
Solution

Reference Methodology Protections Offered Limitations

HEALED [30] A software-based
remote attestation and
disinfection scheme for
embedded devices

Detects malicious soft-
ware of a device

Provides security against mal-
ware only

CIDNs and in-
sider attacks

[31] Presents a survey on
CIDNs and their robust-
ness against insider at-
tacks

Introduces various in-
sider attacks and some
generalized protections
to prevent them

Does not propose any solution
to detect a compromised IDS
node

HBCIDS [32] Relies on simple trust
management system
to distinguish between
honest and dishonest
nodes

Prevents collusion at-
tacks

Vulnerable to attacks against
reputation systems

ABDIAS [33] Supports majority
voting-based system
to detect compromised
nodes

Provides early warnings
for pre-attack activities

Vulnerable to collusion attacks

Worminator [34] IDS nodes share alert
information to detect
worms

Achieves better detec-
tion accuracy by using
alert correlation

Lack of trust management
among nodes

Vulnerable to insider attacks
IDS for detect-
ing compromised
gateways

[35] Detects compromised
gateways in an IoT
network based on
packet drop probability

Detects a malicious
gateway that may
intentionally drop or
corrupt the packets

Not effective against compro-
mised CIDS nodes

Enhanced CIDN
protection against
insider attacks

[36] Uses blockchain to pro-
tect CIDN against ad-
vanced insider attacks
such as PMFA

Detects betrayal and
PMFA faster than other
methods

Seems more communication
intensive

May not be effective, if an
attacker compromises many
nodes in the same neighbor-
hood

-tacks and respective generalized solutions to contain them.
It does not propose a strategy to detect compromised nodes
as a result of insider attacks. Moreover, it classifies various
CIDNs based on their vulnerability to insider attacks. Simi-
larly, some of the Collaborative Intrusion Detection Systems
(CIDS) use a simple trust management mechanism to dis-
tinguish honest nodes and dishonest nodes, such as Host-
based Collaborative Intrusion Detection System (HBCIDS)
[32]. HBCIDS prevents collusion attacks but being based on
trust estimation, it is assumed to be vulnerable to attacks
against reputation systems [37]. Correspondingly, in another
CIDS [33], a majority voting-based system is used to detect
compromised nodes. However, it is vulnerable to collusion
attacks. In addition, some CIDS like Worminator [34] rely
on alert correlation to achieve better detection accuracy.
Nonetheless, due to a lack of trust management among

CIDS nodes, it is vulnerable to numerous insider attacks.
Furthermore, authors in [35] proposed an IDS for detecting
compromised gateways in an IoT network. The suggested
scheme detects malicious gateways based on the probability
of dropped or corrupt packets either in the uplink or downlink
direction. However, it is assumed that such a solution cannot
protect against a malicious gateway that may input messages
with false data in the network. Moreover, this technique is not
expected to be effective against compromised CIDS nodes
that may inject false alerts into the network.

Finally, researchers in [36] presented a blockchain-based
solution to protect a CIDN against advanced insider at-
tacks such as Passive Message Fingerprint Attacks (PMFA).
It effectively detects betrayal and PMFA faster than other
challenge-based trust models. However, due to the propaga-
tion of challenge-request pairs (in respect of a tested node) to

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

other network nodes for verification by the tester, this scheme
appears to be communication intensive. Moreover, there is
a question about the effectiveness of this scheme once the
attacker compromises many nodes in the same neighborhood
and modifies their signature/alarm library/responses.

Although some of the node attestation methods mentioned
above protect against firmware, code, or software (applica-
tion) modification attacks, none of these methods protects
against a physical compromise of the device and any mod-
ification of the hardware components, device configuration,
or network settings. Moreover, most of the subject methods
are based on challenge-response protocols known to have
glaring weaknesses, including vulnerability to network at-
tacks, TOCTTOU gaps, increased energy consumption, time
synchronization problems, low detection rate, and restricted
to star/cluster tree network topology. Besides, a few solutions
focus on the software components and fail to verify the
overall state of a device at run-time. Correspondingly, devices
equipped with trusted computing hardware have security
against data breaches and software integrity but not against
general device state alterations, including changes in network
configuration/settings and modification in device hardware to
affect its legitimate operation. Hence, there is a need for an
absolute scheme that should verify the integrity of devices in
an IoT network by achieving the following objectives:

a A compromised or a malfunctioned device should be
detected at the earliest.

b The device attestation process should be secure yet
transparent.

c No single party should be able to influence or forge the
attestation process.

d The solution should be computationally economical.

Therefore, in this article, we introduce a new method to
verify the integrity of digital devices inspired by human DNA
(Deoxyribonucleic Acid) identification [38]. DNA typing
technologies and associated bioinformatic tools have been
used for more than two decades to identify humans, espe-
cially the victims of Mass Fatality Incidents (MFI) [39].
These incidents range from air crashes to tragedies like
the World Trade Centre. In this context, “Genome” is an
organism's complete set of DNA, including all of its genes. It
contains all of the information needed to build and maintain
the organism [40]. Therefore, taking motivation from the
concept of genome, we conceived the idea of verifying the
integrity of digital devices by computing a “Digital Device
Genome (D2Gen)” over the device's software and hardware
components, network configuration, and vital metadata. In
this context, any unauthorized modification/malfunction in
the device's hardware or software components, network con-
figuration, or ambient conditions will result in a different
D2Gen as compared to the one referring to default settings.
Hence, in such a way, a compromised device can be easily
detected.

Moreover, to ensure the integrity of the D2Gen protocol,
we have leveraged blockchain technology and its inherent

benefits such as decentralized control, data immutability,
trustless operation, and the ability to run distributed ap-
plications (DApps). Once developed and tested, the device
integrity check concept can be extended to more specific
Cyber Physical Systems (CPS), such as PLCs' security in
the Supervisory Control and Data Acquisition (SCADA)
networks. Accordingly, a gist of vital contributions of this
research is proffered in the following section.

A. CONTRIBUTIONS OF THIS RESEARCH
1) Introduces a new method of end device integrity verifi-

cation.
2) Facilitates detection of an illegitimately compromised

or malfunctioned end device.
3) Prevents a varsity of insider attacks involving modi-

fications/alterations of end device hardware, software,
or network configuration and ambient operating condi-
tions.

4) Avoids trust issues during verification process by inher-
iting decentralized control, network consensus, data im-
mutability and transparency features of the blockchain
technology.

5) Protects against application forgery/modification at-
tacks.

6) Prevents initiation of forged/fake transactions by unau-
thorized CIDS nodes in the network.

7) Resilient against replay attacks.
8) Proffers a comprehensive analysis on security and per-

formance efficiency of the proposed framework.
9) Expected to augment existing device attestation proto-

cols.

B. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows: Section III intro-
duces D2Gen. Then, Section IV illustrates the integrity check
protocol, security guarantees, and associated challenges and
limitations. Similarly, Section V presents a comprehensive
security and performance analysis of the Proof of Concept
(POC) of proposed framework. Whereas Section VI con-
cludes the article with a hint of future work.

III. D2GEN
This section introduces the concept of computation of D2Gen
for an IDS node over its hardware and software components
and network configuration to ensure its legitimate operation.
A productive design and development of D2Gen can help
detect a malicious node even if a single byte of data is
changed in its software components, including firmware,
malware definitions, and important system files. Similarly,
D2Gen aspires to detect a compromised node even if a minute
change is made in its hardware and software components,
or network configuration. We also envisage that irrespective
of the type of application, e.g., may it be the blockchain or
cloud-supported services, D2Gen will augment and give a
new direction to the existing IoT/IIoT/IT device attestation
protocols.

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1. Requirements of a Secure D2Gen Protocol.

A. COMPUTATION OF D2GEN

D2Gen is computed by measuring particular hardware and
software characteristics, network configuration/settings, and
associated metadata for respective devices. The hardware and
software configurations may differ as per the type of IoT/IIoT
or other network devices such as IDS. However, in this
paper, we propose the most generalized parameters for the
computation of D2Gen. Whereas, more specific parameters
for the integrity check of an IDS node will be highlighted in
Section V during our discussion about the POC.

1) Measurement of Hardware Characteristics

We believe that some of the hardware properties that can con-
tribute to verifying and assessing a digital device's integrity
include.

a) Measuring voltage and currents on the specific ports to
ascertain if any additional hardware is connected to the
device.

b) Measuring memory size and processor speed to verify
that the attacker has not altered the device's computa-
tional and storage capacity.

c) Checking boot sequence to identify any misappropria-
tion during device boot up.

d) Checking the status of various hardware components
installed to detect any change in device hardware con-
figuration, e.g., the battery capacity and drainage, may
help identify illegal device operation other than the
approved/default functionality.

2) Measurement of Software Characteristics

In case of any successful security breach, that may be a cyber-
attack or a physical compromise; the attacker may modify
the firmware, system/application software, or the state of data
stored on the device. Moreover, in the case of an IDS, the data
or device state may include malware signature library and
the order of the signatures within the signature bank. Hence,

numerous aspects concerning device's software components
and related metadata must be monitored and measured.

a) Checking device identity may help detect and prevent
a Sybil attack [41]. In which an attacker creates and
presents multiple identities using a single device.

b) Monitoring the number of applications running on a de-
vice will help detect unauthorized applications installed.
It is most suitable for corporate environments with Bring
Your Own Device (BYOD) policies.

c) Checking types and versions of applications installed.
It will also help in the identification of unauthorized
applications installed on the device.

d) Monitoring access rights of the applications. This aspect
is critical because an application with escalated priv-
ileges may spy on the user and steal private/sensitive
data.

e) Probing access permissions of various files. This factor
is also essential in disclosing any change in the default
permissions of the system files installed on a device.

f) System files' read and write permissions. This is an
important factor in preventing device malfunction and
unauthorized operation.

g) Checking the state of IDS node's attack/malware signa-
tures library is also essential.

h) Checking the order of malware signatures in the IDS
node's attack signatures library.

i) Computing cryptographic hash of vital system files and
firmware/application code. This is another crucial re-
quirement to detect any unauthorized changes to the
system files, firmware, or application code.

3) Verification of Network Configuration and Settings
The integrity of a device cannot be effectively assessed
without evaluating its network settings and other metadata.
These parameters may include:

a) Configuration of active and deactivated ports.
b) Network credentials and approved settings.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

c) Checking connected devices to detect any unauthorized
hardware.

d) Pin configuration/settings (for embedded /IoT devices).
e) Mode of operation, i.e., client or server mode.
f) Checking device location is always helpful in providing

location-based services and the successful implementa-
tion of geo-fencing. Based on the same concept, a de-
vice's location is included in the computation of D2Gen
so that a device communicating from an unwarranted or
unusual place can easily be detected.

g) Verifying device position (flat, raised, vertically hang-
ing, upside down, etc.).

h) Analyzing the ambient conditions of the device, includ-
ing temperature, humidity, light intensity, etc. This is
critical for the integrity of sensing and actuating devices,
i.e., whether these devices are operating and communi-
cating from their designated location/environment.

IV. THE INTEGRITY CHECK PROTOCOL
To ensure that the device integrity verification protocol per-
forms legitimately, we inferred some essential security re-
quirements as shown in Fig.1. Therefore, blockchain tech-
nology has been used to satisfy most of the security issues.
Detailed reasoning in this regard is later proffered in Section
IV-A.

Elaborating on D2Gen protocol, a device is first configured
and then installed in the operational environment, e.g., in
a CIDS, smart grid, or a remote health monitoring system.
The overview of the entire device integrity check process
(D2Gen) is shown in Fig.2. Before its deployment in the
network, firstly, the base genome map of the device is com-
puted over its selected hardware and software characteristics,
network configuration, and other metadata as illustrated in
Section III. The Base_D2Gen is then stored for the respective
device on the blockchain through a smart contract. The end
device can be a lite blockchain client or a full node based
on its storage and computation resources. In both cases, the
device can interact with the blockchain using smart contracts.
Later, whenever the device is scheduled to send data such
as IDS log message or a sensor update, it will compute and
append D2Gen to the routine data and push the data into the
blockchain through the DApp (smart contract). At this mo-
ment, before updating the state of the blockchain, the block
proposer/miner compares the device's genome forwarded
with the message or sensor data with the Base_D2Gen stored
on the blockchain.

If the genome matches, only then the IDS log or sensor
data will be published in the blockchain. Otherwise, in case
of a conflict, the message (transaction) will be discarded, and
an alert message will be sent to the network administrator and
device owner, notifying the possible malicious behavior of
the respective device. The infected or invalid device's identity
(ID) will be appended to the list of blacklisted nodes stored
on the blockchain for easy access by all the stakeholders.
Later, when the device is investigated and rectified, the base
genome is recomputed and stored on the blockchain after

approval of all the stakeholders maintaining miner nodes in
the blockchain network. It is followed by the removal of the
device from the blacklist after the first successful D2Gen
verification. In addition, if a node's state is legitimately mod-
ified, i.e., its software is updated, or hardware components
are upgraded, then its Base_D2Gen will be recomputed and
stored on the blockchain.

A. SECURITY GUARANTEES
Based on the initial analysis, it is implied that our proposed
blockchain-based device integrity check protocol protects
against numerous security threats. As D2Gen comprises a
device's software and hardware components and related in-
formation, the protocol protects against software/code mod-
ifications, execution of unauthorized applications, hardware
alterations, changes in device configuration/settings, and
modification of device data. Moreover, some information
concerning the device's network configuration, location, and
authorized/default connected hardware is also part of D2Gen.
Hence, it is perceived that there are some security assurances
against change in device location/position, modifications in
network configuration, and attachment of unauthorized de-
vices to different ports.

Here, a question may arise, what benefits do we get by
using blockchain. The main objective is to leverage some
inherent advantages of the distributed ledger technology [42],
[43], [44], [45], [46], [47] such as decentralized control,
distributed architecture and applications, data immutability,
trustless operation, and network consensus to approve any
transaction (TX). In this context, our proposed framework
uses smart contracts (DApps) to extract a varsity of device
data to compute D2Gen through methods/functions built-in
the blockchain like web3.js methods in Ethereum blockchain
[48]. Therefore, it is nearly impossible for an attacker to
emulate a fake response to the D2Gen attestation or change
the Base_D2Gen stored on the blockchain without detection.
Moreover, there is no need for a trusted verifier or an au-
thentication server. The integrity check is done through smart
contracts in a decentralized way. It is also believed that such
a plenary solution is likely to protect against software license
spoofing attacks.

B. CHALLENGES
There is a need to overcome specific challenges to employ
this innovative idea in real-world IoT/IIoT networks like
any other technology. The critical issue is the development
of blockchain technology with integral methods/functions
(like web3.js library for Ethereum blockchain) to extract
data/information about a device's hardware and software
components. The second prominent requirement is the nor-
malization of the variations in the current and voltage mea-
surements required for the computation of D2Gen. Thirdly,
the decision on what information about a device's software
and hardware components, network configuration/settings,
and device metadata is to be used to verify the device in-
tegrity can only be made after numerous tests and trials.

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FI
G

U
R

E
2.

C
on

ce
pt

ua
ld

ia
gr

am
of

th
e

di
gi

ta
ld

ev
ic

e
in

te
gr

ity
ch

ec
k

ba
se

d
on

di
gi

ta
lg

en
om

e.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Nonetheless, the proposed solution is likely to bridge the
gaps in existing security vulnerabilities and the requirements
of an effective device integrity check mechanism. However,
at the same time, there is a need for multiple tests and
trials to determine when to compute the device genome.
The possible options include: at the device restart, at various
system checkpoints, after major installations, whenever there
is an unusual resource utilization, or at runtime with every
sensor/device data update.

Correspondingly, a high frequency of computation and
verification of D2Gen may also affect the system's usability
and performance. Therefore, there needs to be a balance
between security, usability, and performance. It is presumed
that such a relationship heartily varies with the security and
safety requirements of the subject systems. A security-critical
system may sacrifice usability and utilization of resources
over enhanced protection against device compromise and
malicious operation.

C. LIMITATIONS
During the elementary evaluation of the proposed device
integrity check framework, certain limitations have also been
deduced. These limitations constitute:

1) A specialized hardware/Integrated Circuit (IC) is re-
quired to detect variations in current and voltage at
specific points of the device hardware.

2) Currently, the proposed framework is suitable for
blockchain-based IoT/IIoT systems only.

3) Overall, D2Gen is to be computed over many hardware,
software, network configuration, and other device pa-
rameters. Whereas some of these parameters are dy-
namic and others are static. E.g., voltage and current
levels at specific ports may vary at every measurement.
While the static parameters such as OS CPU archi-
tecture, system file permissions, device hostname, and
total memory size may remain unchanged for a long
time. Accordingly, unless we segregate the dynamic and
static parameters and also set/normalize the threshold
values for the dynamic parameters, there is always a
chance that the D2Gen computed at runtime will differ
from the Base_D2Gen. This mismatch will result in
false negatives, i.e., sometimes legitimate nodes may not
pass the integrity check, and their TXs will be rejected.
Nonetheless, false negatives are better than false posi-
tives in a critical IoT infrastructure scenario, e.g., smart
grid, smart cars, intelligent traffic control systems, etc.,
where safety and security are of paramount importance.

V. PROOF OF CONCEPT AND PERFORMANCE
ANALYSIS OF D2GEN
To carry out an authentic security and performance analysis
of the D2Gen protocol, we developed a POC as per the
experimental setup shown in Fig.3. A list of software and
hardware used in the experiment is shown in Table.2. The
testbed (Fig.3) comprises two CIDS server nodes that are
also the blockchain miner nodes, two Raspberry Pi (Rpi) 3

model B running snort IDS with a light blockchain applica-
tion, and two network devices including a smartphone and
a personal computer. Once the hardware was available, we
first developed the smart contract on Remix-IDE in solidity
language. The pseudocode for the smart contract (illustrated
later in Section V-A) is shown in Algorithm.1. In this testbed,
only the CIDS server, which is the trusted owner/manager of
the CIDS network, is authorized to deploy the smart contract
on the blockchain and store Base_D2Gen values for the Rpi-
based CIDS nodes. However, these operations are confirmed
based on network consensus. It is imperative to highlight that
Base_D2Gen is computed over sixteen different hardware,
software, and network configuration parameters. These pa-
rameters include:

1) Network interfaces
2) Hostname
3) OS architecture
4) Total memory size
5) Permissions for /etc/security/access.conf file
6) Contents of /etc/networks file
7) Ambient temperature of the node (measured using

DS18B20 temperature sensor)
8) Information about each logical cpu core
9) OS platform

10) OS release details
11) OS type
12) OS version
13) Default directory for temporary files
14) Information about the user including username, uid, gid,

shell, and homedir
15) OS specific end-of-line marker
16) Details of all the connected (authorized) devices

After the contract is deployed, the CIDS servers start
listening for specified event emissions on the blockchain
network. In the POC, currently, the Rpi-based CIDS nodes
emit two events once they initiate the TXs containing the
new IDS alert message and the current D2Gen. As shown
in Fig.4, an event named newTx_D2Gen emits information
about the current D2Gen of the respective Rpi-based CIDS
node. Moreover, the account belonging to the Rpi node,
which was used to pay for the TX fee, is also shown against
the “from” field just above the red box. This event notification
also displays the smart contract address, block number in
which this TX is included, and the TX hash.

Similarly, in Fig.5, the event named “newIDSLogEv” pro-
vides details of the latest IDS log message (enclosed in red
box) that includes date and time, source and destination IP
address, IP protocol, TTL, and Type of Service (ToS). These
details may vary depending upon the rules configured in
Snort IDS. In addition, this event notification also shows the
date and time when the IDS log message TX was initiated.

For experiment purposes, while installing and configuring
snort on the Rpis, we defined a custom rule in local.rules file
to generate an alert if an ICMP message is sent from any
source to any destination on the home network. Accordingly,

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. Experimental setup for the POC.

TABLE 2. Software and Hardware Requirements for the POC

Component Specifications
Software
Ethereum blockchain for Rpi geth-linux-arm7
IDS for Rpi snort-2.9.17.1
Rpi Imager v1.6.1
Rpi OS Raspbian GNU/Linux 10 (buster)
Data acquisition library (DAQ) for Snort (On Rpi) daq-2.0.7
golang (for CIDS server/miner nodes) go1.15.linux-amd64
Ethereum (for CIDS server/miner nodes) Geth 1.8.27 64-bit or higher ver
Ethereum IDE to create/test smart contracts Remix-Ethereum IDE
Node js v14.x
NPM v6.14.x
OS (for CIDS server/miner nodes) Ubuntu 64-bit 21.044
Hardware

Raspberry Pi 3 Model B 64 bit ARM Cortex-A53 Quad Core Processor, 1 GB RAM, 64
GB SD Card (Class 10 or higher),

MacBook Pro 2.6 GHz 6-Core Intel Core i7, 16 GB RAM

some changes were also made in the snort.conf file. Hence,
when the smartphone initiates a command to ping a personal
computer, the Rpi-based CIDS node immediately detects the
ICMP packet and generates an alert. The alert message is
output to the snort log file. As soon as a new snort log file is
created, a JavaScript on the respective Rpi node executes, and
it reads the vital information from the log file (snort.log.x),

including protocol type, source, and destination IP address,
and ToS. This alert message is then fed into the blockchain by
the Rpi CIDS node as a TX. Once the TX is mined in a block
by the CIDS server/miner nodes, the rest of the CIDS nodes
can update their IDS rules based on this threat alert. Hence,
blockchain provides an immutable and transparent view of
the threat environment to all the CIDS nodes simultaneously.

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. New D2Gen Event Emission.

FIGURE 5. IDS Alert Message Event Emission.

A. PSEUDOCODES OF THE SMART CONTRACT AND
THE JAVASCRIPT

The pseudocodes of the smart contract and the JavaScript
code to compute D2Gen, extract IDS log message, and
initiate respective TXs are exhibited as Algorithm.1 and

Algorithm.2 respectively.
As shown in Algorithm.1, the first function/procedure

CIDS_Gen sets the contract owner's address on blockchain.
Then the contract owner initiates a TX to publish the smart
contract on the blockchain. Similarly, only the smart contract
owner can save/publish the Base_D2Gen in respect of an

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 1 - CIDS Genome Computation
procedure CIDS_GEN(sender_address) . The address of the contract owner
is determined
end procedure
Owner initiates the smart contract Deploy TX
procedure PUBBASE_D2GEN(Base_D2Gen)

if sender == owner then
Set Base_D2Gen

else
Return: Operation not permitted

end if
end procedure
procedure PUBLOG(IDS_Alert) . All the CIDS nodes can publish alert
messages

compute current Date and Time, and sender ID
read IDS log message
emit new IDS log event

end procedure
procedure PUBD2GEN(Current_D2Gen) . All the CIDS nodes can submit
D2Gen with every IDS alert

compute current D2Gen of Rpi node that is sending IDS log message
emit new D2Gen event

end procedure
procedure GETD2GEN()

if sender == owner then
show D2Gen

else
return: operation not permitted

end if
end procedure
procedure GETIDS_LOG()

return IDS log message
end procedure

end device on the blockchain using a predefined method
PubBase_D2Gen. The smart contract will check whether
the account address that initiated the TX is of the contract
owner or not. If the address is not of the smart contract owner,
then the operation will not be permitted. Correspondingly, all
the CIDS nodes in the network can initiate IDS alert TXs
using function PubLog that takes IDS_Alert message as a
parameter. Once this function is called, it firsts compute the
current date and time and sender ID as a part of the time
stamp. Then the alert message from the IDS log is read. Later,
when the TX to publish IDS log/alert is approved based on
network consensus, an event concerning the new IDS log is
emitted. Any CIDS server monitoring the network will see
the requisite event notification.

Accordingly, a method named PubD2Gen can be called
by all the CIDS nodes to publish their current D2Gen (at
runtime) along with the IDS log/alert TX. In this case, as
well, an event is emitted once the TX is approved/mined.
The next method in the smart contract is GetD2Gen, which
the smart contract owner calls to check the Base_D2Gen of
a node. Finally, the GetIDS_Log function returns the last
published IDS alert message.

Similarly, as shown in Algorithm.2, the JavaScript code
on the Rpis (CIDS nodes) require crypto, os (operating
system), fs (file system), and web3.js modules for different
operations. Moreover, as already enumerated at the end of
Section-V para 1, various procedures are used to extract
information about specific hardware, software, and network
parameters of the respective CIDS node for the computa-
tion of Base/runtime D2Gen. Due to the paucity of space,
fourteen out of sixteen methods are shown in the algorithm.

Algorithm 2 - Rpi Log Alert and D2Gen TX Submission
Require: crypto, os, fs, web3

procedure OS.NETWORKINTERFACES()
return: Rpi network interfaces

end procedure
procedure OS.HOSTNAME()

return: Rpi hostname
end procedure
procedure OS.ARCH()

return: Rpi CPU architecture
end procedure
procedure OS.TOTALMEM()

return: total memory size of Rpi
end procedure
procedure CHECK_FILE_PERMISSIONS(access.conf)

return: status of read and write access to the file
end procedure
procedure FS.READFILE(networks)

if Error in reading file then
print error message

else
read: Network_Config
return: Network_Config

end if
end procedure
procedure GETTEMP()

return: Current temperature around the node
end procedure
procedure OS.CPUS()

return: info about each logical cpu core
end procedure
procedure OS.PLATFORM()

return: OS platform details
end procedure
procedure OS.RELEASE()

return: OS platform release details
end procedure
procedure OS.TYPE()

return: Type of OS
end procedure
procedure OS.TEMPDIR()

return: default dir for temp files
end procedure
procedure OS.USERINFO()

return: info about user (username, uid, gid, shell, and homedir)
end procedure
procedure USB.GETDEVICELIST()

return: all the connected devices
end procedure
procedure D2GEN_CALC(Rpi_Parameters)

return: D2Gen of Rpi (a hash string)
end procedure
procedure FS.READFILE(snort_logs)

if Error in reading file then
print error message

else
read: IDS log message
return: IDS log data

end if
end procedure
connect to the RPC provider at localhost:8043
set web3.eth.defaultAccount
init an instance of smart contract
procedure PUBLOG(IDS_Log_data)

if account is unlock then
init TX
display: hash of TX

else
display: error message

end if
end procedure
procedure PUBD2GEN(new_D2Gen)

if account is unlock then
init TX
display: hash of TX

else
display: error message

end if
end procedure

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6. Detection of Unauthorized USB Device.

For instance, OS.NetworkInterfaces function returns an
array of objects that each contains/describes a network in-
terface that has been assigned a network address. In the
same way, OS.Arch method returns the operating system
CPU architecture of the respective Rpi/CIDS node and
OS.TotalMem provides the total memory size. Similarly,
the Check_File_Permissions method retrieves the status
of read and write access to the access.conf file.

Correspondingly, FS.ReadFile function extracts the con-
tents of /etc/networks file, and GetTemp returns the am-
bient temperature of the node. As the temperature is a
dynamic parameter, we defined a range of ±5 of the de-
fault temperature at different times of the day. Likewise,
OS.CPUs method provides information about each logical
CPU core and OS.Release function returns OS platform
release details. Similarly, information about the default direc-
tory (dir) to store temporary (temp) files is obtained through
OS.TempDir method. In addition, some important informa-
tion about the user, including username, user ID (uid), group
ID (gid), shell, and home directory (homedir) is extracted
by using OS.UserInfo function. Another vital parameter
that plays a significant role in identifying a compromised
node is information about all the connected devices. This is
a piece of very useful information that is obtained through
USB.getDeviceList method.

Furthermore, D2Gen_Calc and FS.ReadFile methods
are called to compute the D2Gen and read IDS log data,
respectively. It is followed by the connection of the respective
Rpi (CIDS node) on a specific RPC port with the blockchain
network. Also, it is essential to set the default Ethereum
account/address on Rpi that will be used to pay for the TX
costs (in terms of Ethers or Weis). After this, the procedures
named PubLog and PubD2Gen are called to publish IDS
alert messages along with respective Rpi node's D2Gen. For
both these TXs, the respective Rpi node's default Ethereum
account needs to be unlocked using a secure password.
Otherwise, the TXs will not be permitted, and error messages
will be displayed.

Accordingly, if an attacker alters even a single parameter
out of sixteen concerning an end node, the D2Gen computed
at runtime will not match the Base_D2Gen already stored on
the blockchain. Resultantly, the TX will be rejected, and the
respective node will be marked as compromised. E.g., Fig.6
shows the change in D2Gen computed at the run time once
an unauthorized (other than default devices) USB device is
connected to the respective Rpi node.

B. SECURITY ANALYSIS
The blockchain-based CIDS framework has been analyzed
from the security point of view. In this context, Table.3
highlights the anticipated threats and requisite security mea-
sures. Correspondingly, in a private/consortium network set-
ting, every CIDS node's default account is initialized with
some ethers or weis by the CIDS server that initializes the
blockchain network through genesis file. Hence, no unau-
thorized CIDS node can input or forge a fake TX in the
network. Moreover, being a private/consortium network, the
parameters including network ID, RPC, and web socket port
numbers required to start and synchronize a node with the
blockchain can be hidden from external parties. In addition,
whenever a CIDS node initiates a threat alert TX, it has to
unlock its default Ethereum account with a preset password
known only to him. Hence, it is nearly impossible to spoof
a blockchain-based CIDS node. Another security feature is
that every node in the blockchain network has a unique enode
ID. Unless the miner nodes add that enode ID as a peer, the
respective node cannot synchronize to the main blockchain.

Concerning the security of smart contracts, as per our
testbed settings, only one of the CIDS server nodes is allowed
to deploy the smart contract to the blockchain as an owner.
Later, all other nodes can access the smart contract methods
using the smart contract application binary interface (Abi)
and the contract address. Except for the smart contract owner,
no node can discretely make any change to the smart contract.
Moreover, even if the owner modifies or upgrades the smart
contract, it needs to be re-deployed on the blockchain. Hence,

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Code Obfuscation Methods.

this adds to the system's overall security, as no change can be
made to the smart contacts stealthily. Besides, the access to
the smart contract mutator methods that modify the state of
the threat alerts in respect of a CIDS node can be restricted
to the authorized addresses/accounts of the nodes. In general,
the blockchain-based CIDS is secure against data integrity,
forgery, and application/policy violation threats. Accord-
ingly, the IDS log message and the D2Gen TXs initiated from
the respective Rpi-based CIDS node cannot be replayed once
mined in a block. It is because the IDS log TX emits an event
bearing a timestamp showing date and time when the TX was
submitted. Hence, a replayed TX with an old timestamp can
easily be detected by the CIDS server that is listening to the
event emissions.

Another critical aspect is the security of the JavaScript
code running on Rpi-based CIDS nodes. This script com-
putes D2Gen at runtime, extracts snort IDS log messages, and

then pushes these parameters into the blockchain. Though
blockchain is immutable and prevents data forging and modi-
fication attacks, data integrity is threatened before it is pushed
into the blockchain. Moreover, there is always a credible
threat of physical compromise of CIDS nodes. An attacker
may read and modify the code to prevent computation of
D2Gen at runtime and replay an old response. Hence, to
ensure code integrity and avoid replay attacks, we used
JavaScript Obfuscator [49] to convert the JavaScript source
code running on Rpi-based CIDS nodes into an unreadable
form thus preventing unauthorized analysis and tampering.
Currently, “Obfuscation” is considered as one of the cogent
methods for protecting JavaScript codes from reverse en-
gineering. The obfuscated code becomes unintelligible for
viewers, but its functionality remains the same as the original
code.

Our experiments tested three different code obfuscation

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. Threats and Countermeasures

Threats Security Measures

Participation of unauthorized nodes in the
network

• Only authorized nodes' default accounts are initialized with ethers
or weis through genesis file

• Parameters required to initialize a node such as a network ID, RPC,
and web socket port numbers, are not made public

• To initialize a TX, a CIDS node has to unlock its default account
with a password known only to the node owner

• Only authorized nodes are added as peers to the miner or valida-
tor nodes. Hence, an unauthorized node cannot synchronize and
download blockchain data

Modification or forging of smart contracts

• Only the network owner can deploy a smart contract on the
blockchain (after network consensus)

• Except for network owner, no other CIDS node can make any
change to the smart contracts

• Even network owner cannot modify the smart contracts stealthily
due to the requirement of network consensus to deploy an updated
version of the smart contracts

Fake TXs affecting the performance of the
network

Access to smart contract mutator methods is limited to se-
lected/authorized CIDS nodes only

Replay attacks A timestamp is appended to every TX

Security of JavaScript code against tamper-
ing, unauthorized analysis, fake emulated
response, and replaying of old D2Gen

• Use of JavaScript obfuscator
• Use of various methods/functions builtin the blockchain to extract

device information

Man-in-the-Middle (MITM) attacks,
where an attacker may monitor and
eavesdrop on CIDS nodes' communication
links

• Every CIDS node is a blockchain client. So, these nodes input data
directly to the blockchain at their end. Hence, no MITM attacker
without access to the blockchain network can see TX data

• Only authorized CIDS servers can see the Base_D2Gen of the end
nodes for attestation

FIGURE 8. Number of False Negatives.

methods: simple obfuscation, advanced obfuscation, and
self-defending. As shown in Fig.7, the protected code looks
different in the case of all three methods, i.e., obfuscation,
advanced obfuscation, and self-defending. However, once

executed, all the protected codes displayed the same func-
tionality. Moreover, it is also quite evident that the protected
code is nearly impossible for an unauthorized or malicious
person to understand and modify.

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 9. Number of False Positives.

FIGURE 10. Transaction Commit Time.

Nonetheless, there may be a question about the security
and performance efficiency of the JavaScript obfuscators.
In this regard, researchers in [50] carried out a thorough
comparison of online JavaScript obfuscators based on ob-
fuscation techniques, potency, resilience to deobfuscation,
and costs associated with the process. The authors, identified
“obfuscators.io” [51] to be the most potent, and difficult to
be reversed obfuscator. However, with increased resilience
and potent obfuscation, the size of the code also increases
significantly. Accordingly, obfuscator.io infers an increase
of 36.23% as compared to an increase of just 1.06% in the

case of JavaScript obfuscator [49]. Hence, the selection of
an obfuscator may depend on the security and the perfor-
mance preferences of a system/application. Thus, for critical
systems, the security of code and resilience to adversary
attacks may lead to the acceptance of low performance or
increased code size. On the contrary, for some real-time
systems, a low level of resilience may be enough in relation to
increased performance output. Correspondingly, considering
the security requirements of the D2Gen protocol, we finally
used obfuscator.io to scramble JavaScript codes.

Furthermore, to evaluate the accuracy of the proposed

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 11. Transaction Cost (Gas Usage).

framework concerning false negatives, i.e., a legitimate node
fails the integrity verification, we ran the D2Gen protocol
for hundred times. As shown in Fig.8, for all hundred tri-
als, D2Gen computed at runtime was exactly the same as
Base_D2Gen. Likewise, to determine the probability of false
positives, i.e., a compromised node qualifies the integrity
check, we changed twelve out of sixteen parameters five
times each. The altered parameters include configuration of
network interfaces, attached devices, the hostname of the
node, file permissions, contents of networks file, ambient
temperature, OS release, type and version, the default direc-
tory for temporary files, and user information. The rest of
the four parameters required changes in the device hardware.
Accordingly, as shown in Fig.9, all parameter modifications
except serial 7 (ambient temperature) resulted in a change in
D2Gen, thus dictating that the end node has been tampered
with. However, we obtained two false positives concerning
ambient temperature, i.e., twice the change in ambient tem-
perature resulted in unchanged D2Gen. This behavior sub-
stantiates the need to carefully set/normalize the acceptable
range of values for the dynamic parameters.

C. PERFORMANCE ANALYSIS

To assess the performance efficiency of the D2Gen frame-
work, we measured TX commit time which includes time
taken to compute D2Gen of a node at run-time, extraction of
IDS log message, submission of TXs, and finally mining of
the TXs in a block. We also measured TX cost in terms of gas
usage and the block difficulty for fifty iterations of the D2Gen
protocol. Where gas is a unit of measuring computational
effort that is required to execute specific operations on the
Ethereum network [52]. Since each Ethereum TX requires
computational resources to execute, every TX requires a fee.
Hence, gas refers to the cost needed to conduct a TX on

Ethereum successfully. Therefore, a TX with low gas usage is
considered to be economical. Nonetheless, in each iteration,
the Rpi-based IDS node computes its D2Gen over sixteen
different parameters (already mentioned in Section V) and
then submits two separate TXs comprising D2Gen and IDS
alert message.

As shown in Fig.10, the time taken to run the D2Gen
protocol and mine respective TXs in a block varies from
3.28 secs to 15.72 secs with a mean TX commit time of
9.67 secs. Whereas the expected block time in the public
Ethereum blockchain is between 10 to 19 secs, and in Bitcoin
blockchain, it is 10 mins. Similarly, Fig.11 shows the TX cost
in terms of gas usage for the fifty iterations of the D2Gen
protocol. It is evident that except few iterations, the cost (gas
usage) for the mining of respective blocks is almost static
at 177190, i.e., 0.177 Million as compared to the Ethereum
block gas limit of 15000000 (Fifteen Million) [53]. There-
fore, it can be inferred that the computation requirements
to compute D2Gen over maximum software and hardware
components and mine respective TXs in a block would be
well under the allowable Ethereum block gas limit of fifteen
million. In addition, Fig.12 presents the trend of change
in block difficulty for fifty iterations. A summary of the
experimental results is shown in Table.4.

Though in this experiment, the block limit gradually in-
creases, it drops as well at a few instances. Similarly, in
a real-world Ethereum network, the block difficulty experi-
ences both increases and decrease as an adjustment to keep
the block time between 10-19 secs. E.g., if the current block
is mined in less than 10 secs, then the block difficulty will
be increased accordingly to bring the block time for the next
block within the desired limit of 10-19 secs [54]. Similarly,
on 4th September 2021, the Ethereum block difficulty was
8.60 x 1015 [55] as compared to D2Gen protocol's difficulty

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. Block Difficulty.

TABLE 4. Experimental Results

Test Measurement (Avg of 50 iterations) Comparative Value

TX commit time 9.67 sec Ethereum - 10 to 19 sec and Bitcoin -
10 min

TX cost (gas) 178918 (0.178 million) Ethereum block gas limit - 15 million

Block difficulty 8.52 x 105 Ethereum blockchain block difficulty -
8.54 x 1015

of 8.52 x 105.
The phenomenon of varying difficulty is called as “Dif-

ficulty Bomb.” Correspondingly, an adjustment of 10-20
secs is deemed essential after every 100,000 blocks in the
Ethereum blockchain. It serves two purposes, i.e., security
and scalability. Concerning security, the increase in block
difficulty caters to the rise in computation power by the
block miners. Correspondingly, a limit to minimum block
creation time prevents the creation of blocks more quickly,
thus avoiding a rapid increase in blockchain size.

Besides, there may be a concern that the Ethereum 1.0
network with a TX throughput of only 30 TXs per sec may
not be feasible for a CIDS network. In this regard, it is high-
lighted that Phase-0 of transition to Ethereum 2.0 network
had been initiated in Dec 2020 [56]. The notable features
of the Ethereum 2.0 upgrade include; Proof of Stake (PoS)
consensus protocol [57], shard chains, and an entirely new
blockchain named as “Beacon Chain” [58]. By implementing
blockchain shards, nodes in Ethereum 2.0 network will be
able to manage slices of the network. As Ethereum 2.0 is
expected to be launched with 64 shards hence, it will give
64 times more TX throughput than its predecessor Ethereum

1.0. Correspondingly, it is foreseen that the TX throughput
of Ethereum 2.0 will be around 100,000 TXs per second
[58] as compared to the maximum achievable TX throughput
of 20,000 TXs per sec in case of an optimized version of
Hyperledger Fabric [59].

VI. CONCLUSIONS AND FUTURE WORK
This article introduced a unique scheme of validating IoT
device integrity by computing the device's digital genome.
This concept is derived from the identification of humans
based on their genome profiling. The very idea of genome
profiling motivated us to apply the same approach to digital
devices and develop an initial design of the proposed integrity
check framework for CIDSs. The computation of the device's
digital genome is based on numerous attributes measured
from the device hardware and software components, net-
work configuration/settings, and device metadata. To ensure
secure computation of the base genome and its immutable
storage, blockchain technology is a pedestal of the proposed
framework design. Although the proffered security and per-
formance analysis of the POC compliments the feasibility of
the D2Gen-based device integrity check mechanism, some

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

distinct challenges and limitations highlighted in the article
need to be addressed to develop a fully functional product.

Correspondingly, in the future, we intend to extend the
number of hardware, software, and device configuration
parameters that contribute to the computation of D2Gen.
Sequel to this, segregation of dynamic and static parameters
is also very vital. Accordingly, the dynamic parameters, such
as voltages and current levels at specific device interfaces,
contents of system files, device configuration settings, etc.,
need to be evaluated to set/normalize the threshold so that
malicious behavior can be easily detected. Moreover, to
select the most suitable blockchain technology, we aim to
test the extended version of D2Gen on Ethereum 2.0, Hyper-
ledger Fabric, and IOTA Smart Contracts Protocol (ISCP).
Then based on the security and performance analysis, the
best performing blockchain platform will be used in the
production version of D2Gen.

It is believed that a successful realization of this scheme
will help detect a malicious IoT/IIoT/digital device even if
a single byte of data is changed in its software compo-
nents. Also, if a minute change is made in device's hard-
ware/network configuration or metadata, the forged device
will be easily identified. Resultantly, it will not only provide
security guarantees for a large number of IoT applications but
will also boost the financial impact of the already established
multi-billion-dollar IoT industry.

REFERENCES
[1] L. Yang, “The blockchain: State-of-the-art and research challenges,” Jour-

nal of Industrial Information Integration, vol. 15, pp. 80–90, 2019.
[2] Y. Li, M. Hou, H. Liu, and Y. Liu, “Towards a theoretical framework of

strategic decision, supporting capability and information sharing under the
context of internet of things,” Information Technology and Management,
vol. 13, no. 4, pp. 205–216, 2012.

[3] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[4] M. Zarei, A. Mohammadian, and R. Ghasemi, “Internet of things in
industries: A survey for sustainable development,” International Journal
of Innovation and Sustainable Development, vol. 10, no. 4, pp. 419–442,
2016.

[5] S. Vitturi, C. Zunino, and T. Sauter, “Industrial communication systems
and their future challenges: Next-generation ethernet, iiot, and 5g,” Pro-
ceedings of the IEEE, vol. 107, no. 6, pp. 944–961, 2019.

[6] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni, “Anatomy of
threats to the internet of things,” IEEE Communications Surveys Tutorials,
vol. 21, no. 2, pp. 1636–1675, 2019.

[7] Z. Trabelsi, K. Hayawi, A. Braiki, and S. Mathew, Network Attacks and
Defenses: A Hands-on Approach. CRC Press, 2012. [Online]. Available:
https://books.google.com.au/books?id=lUPSBQAAQBAJ

[8] K. Hayawi, Z. Trabelsi, S. Zeidan, and M. M. Masud, “Thwarting icmp
low-rate attacks against firewalls while minimizing legitimate traffic loss,”
IEEE Access, vol. 8, pp. 78 029–78 043, 2020.

[9] M. Mesbah and M. Azer, “Cyber threats and policies for industrial con-
trol systems,” in Proc. International Conference on Smart Applications,
Communications and Networking (SmartNets). Sharm El Sheikh, Egypt:
IEEE, 2019, pp. 1–6.

[10] V. Sampath Kumar, P. Jagdish, and S. Ravi, “Cybersecurity and cyber
terrorism - in energy sector – a review,” Journal of Cyber Security
Technology, vol. 2, no. 3-4, pp. 111–130, 2018.

[11] A. Wang, R. Liang, X. Liu, Y. Zhang, K. Chen, and J. Li, “An inside
look at iot malware,” in Proc. International Conference on Industrial IoT
Technologies and Applications, F. Chen and Y. Luo, Eds. Wuhu, China:
Springer International Publishing, 2017, pp. 176–186.

[12] T. M. Chen and S. Abu-Nimeh, “Lessons from stuxnet,” Computer, vol. 44,
no. 4, pp. 91–93, 2011.

[13] E. Schultz, “A framework for understanding and predicting insider
attacks,” Computers & Security, vol. 21, no. 6, pp. 526–531, 2002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S016740480201009X

[14] N. Kolokotronis, S. Brotsis, G. Germanos, C. Vassilakis, and S. Shiaeles,
“On blockchain architectures for trust-based collaborative intrusion detec-
tion,” in IEEE World Congress on Services (SERVICES), vol. 2642-939X,
Milan, Italy, 2019, pp. 21–28.

[15] W. Meng, W. Li, and L. Zhu, “Enhancing medical smartphone networks
via blockchain-based trust management against insider attacks,” IEEE
Transactions on Engineering Management, vol. 67, no. 4, pp. 1377–1386,
2020.

[16] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni, “A trust-aware,
p2p-based overlay for intrusion detection,” in 17th International Work-
shop on Database and Expert Systems Applications (DEXA’06), Krakow,
Poland, 2006, pp. 692–697.

[17] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “Swatt: software-
based attestation for embedded devices,” in Proc. IEEE Symposium on
Security and Privacy. Berkeley, CA, USA: IEEE, 2004, pp. 272–282.

[18] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in
Advances in Cryptology - CRYPTO 2003, D. Boneh, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 617–630.

[19] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor
networks: analysis defenses,” in Proc. 3rd International Symposium on
Information Processing in Sensor Networks, 2004 (IPSN 2004). IEEE,
2004, pp. 259–268.

[20] L. J. Craig, “A tour of tocttous,” SANS Institute, pp. 1–11, 2002.
[Online]. Available: https://www.sans.org/reading-room/whitepapers/
securecode/tour-tocttous-1049

[21] M. Prandini and M. Ramilli, “Return-oriented programming,” IEEE Secu-
rity Privacy, vol. 10, no. 6, pp. 84–87, 2012.

[22] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in 14th ACM Conference
on Computer and Communications Security (CCS ’07). NY, USA:
Association for Computing Machinery, 2007, p. 552–561. [Online].
Available: https://doi.org/10.1145/1315245.1315313

[23] Y. Yang, X. Wang, S. Zhu, and G. Cao, “Distributed software-based
attestation for node compromise detection in sensor networks,” in Proc.
26th IEEE International Symposium on Reliable Distributed Systems
(SRDS 2007). Beijing, China: IEEE, 2007, pp. 219–230.

[24] I. Makhdoom, M. Afzal, and I. Rashid, “A novel code attestation scheme
against sybil attack in wireless sensor networks,” in 2014 National Soft-
ware Engineering Conference, 2014, pp. 1–6.

[25] K. Song, D. Seo, H. Park, H. Lee, and A. Perrig, “OMAP: One-way mem-
ory attestation protocol for smart meters,” in Proc. 9th IEEE International
Symposium on Parallel and Distributed Processing with Applications
Workshops. Busan, Korea (South): IEEE, 2011, pp. 111–118.

[26] B. Lee and J.-H. Lee, “Blockchain-based secure firmware update for
embedded devices in an internet of things environment,” The Journal of
Supercomputing, vol. 73, no. 3, pp. 1152–1167, 2017.

[27] H. R. Ghaeini, M. Chan, R. Bahmani, F. Brasser, L. Garcia, J. Zhou,
A.-R. Sadeghi, N. O. Tippenhauer, and S. Zonouz, “Patt: Physics-based
attestation of control systems,” in Proc. 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019). Chaoyang
District, Beijing, China: USENIX Association, Sep. 2019, pp. 165–
180. [Online]. Available: https://www.usenix.org/conference/raid2019/
presentation/ghaeini

[28] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and
A.-R. Sadeghi, “Homesnitch: Behavior transparency and control for smart
home iot devices,” in Proc. 12th Conference on Security and Privacy
in Wireless and Mobile Networks, ser. WiSec ’19. New York, USA:
Association for Computing Machinery, 2019, p. 128–138. [Online].
Available: https://doi.org/10.1145/3317549.3323409

[29] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.

[30] A. Ibrahim, A.-R. Sadeghi, and G. Tsudik, “Healed: Healing & attestation
for low-end embedded devices,” in Proc. International Conference on
Financial Cryptography and Data Security, I. Goldberg and T. Moore,
Eds. St. Kitts, Saint Kitts and Nevis: Springer International Publishing,
2019, pp. 627–645.

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[31] C. J. Fung, “Collaborative intrusion detection networks and insider at-
tacks.” Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications, vol. 2, no. 1, pp. 63–74, 2011.

[32] C. J. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba, “Trust manage-
ment for host-based collaborative intrusion detection,” in Proc. Interna-
tional Workshop on Distributed Systems: Operations and Management,
F. De Turck, W. Kellerer, and G. Kormentzas, Eds. Berlin, Heidelberg:
Springer, 2008, pp. 109–122.

[33] A. Ghosh and S. Sen, “Agent-based distributed intrusion alert system,” in
Proc. 6th International Workshop on Distributed Computing (IWDC’04),
A. Sen, N. Das, S. K. Das, and B. P. Sinha, Eds. Hiroshima, Japan:
Springer, 2005, pp. 240–251.

[34] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo, “Towards
collaborative security and p2p intrusion detection,” in Proc. 6th Annual
IEEE SMC Information Assurance Workshop. NY, USA: IEEE, 2005,
pp. 333–339.

[35] N. V. Abhishek, T. J. Lim, B. Sikdar, and A. Tandon, “An intrusion
detection system for detecting compromised gateways in clustered iot
networks,” in Proc. IEEE International Workshop Technical Committee on
Communications Quality and Reliability (CQR’18). Austin, TX, USA:
IEEE, 2018, pp. 1–6.

[36] W. Meng, W. Li, L. T. Yang, and P. Li, “Enhancing challenge-based
collaborative intrusion detection networks against insider attacks using
blockchain,” International Journal of Information Security, pp. 1–12,
2019.

[37] A. Jøsang, R. Ismail, and C. Boyd, “A survey of
trust and reputation systems for online service provision,”
Decision Support Systems, vol. 43, no. 2, pp. 618–644, 2007,
emerging Issues in Collaborative Commerce. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167923605000849

[38] I. Makhdoom, F. Tofigh, and M. Abolhasan, “A method of
electronic device integrity check based on device digital genome
(d2igen),” Australia Patent 2 018 204 784, Jan. 16, 2020. [Online].
Available: http://pericles.ipaustralia.gov.au/ols/auspat/applicationDetails.
do?applicationNo=2018204784

[39] B. Leclair, R. Shaler, G. R. Carmody, K. Eliason, B. C. Hendrickson,
T. Judkins, M. J. Norton, C. Sears, and T. Scholl, “Bioinformatics and
human identification in mass fatality incidents: The world trade center
disaster*,” Journal of Forensic Sciences, vol. 52, no. 4, pp. 806–819, 2007.

[40] NIH, “A Brief Guide to Genomics,” 2020, Accessed on: Mar 31,
2021. [Online]. Available: https://www.genome.gov/about-genomics/fact-
sheets/A-Brief-Guide-to-Genomics

[41] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, P. Druschel,
F. Kaashoek, and A. Rowstron, Eds. Berlin/Heidelberg, Germany:
Springer Berlin Heidelberg, 2002, pp. 251–260.

[42] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, 2014.

[43] C. Christian, “Architecture of the hyperledger blockchain fabric,” in Work-
shop on distributed cryptocurrencies and consensus ledgers, vol. 310,
no. 4, Chicago, IL, 2016.

[44] “Introduction to hyperledger fabric,” 2020, Accessed on: Jun 28, 2021.
[Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-
2.2/blockchain.html

[45] G. Gideon, “Multichain private blockchain - white paper,” 2015, Accessed
on: Jun 28, 2021. [Online]. Available: https://www.multichain.com/
download/MultiChain-White-Paper.pdf

[46] “Quorum - white paper,” 2018, Accessed on: Jun 28, 2021.
[Online]. Available: https://github.com/ConsenSys/quorum/blob/master/
docs/Quorum\%20Whitepaper\%20v0.2.pdf

[47] N. A. Dawit, S. S. Mathew, and K. Hayawi, “Suitability of blockchain for
collaborative intrusion detection systems,” in 12th Annual Undergraduate
Research Conference on Applied Computing (URC). Dubai, UAE: IEEE,
2020, pp. 1–6.

[48] “web3.js - ethereum javascript api,” 2016, Accessed on: Jun 29, 2021.
[Online]. Available: https://web3js.readthedocs.io/en/v1.3.4/

[49] “The Most Secure Way to Protect JavaScript Code,” 2021, Accessed on:
Jun 16, 2021. [Online]. Available: https://javascriptobfuscator.com

[50] S. Rauti and V. Leppänen, “A comparison of online javascript obfuscators,”
in International Conference on Software Security and Assurance (ICSSA),
2018, pp. 7–12.

[51] “JavaScript Obfuscator Tool,” 2021, Accessed on: Jun 17, 2021. [Online].
Available: https://obfuscator.io

[52] Paul, Wackerow, “Gas and fee,” 2021, Accessed on: Jun 29, 2021.
[Online]. Available: https://ethereum.org/en/developers/docs/gas/

[53] “Ethereum Gas Limit Hits 15M as ETH Price Soars,” 2021, Accessed on:
Jun 14, 2021. [Online]. Available: https://www.coindesk.com/ethereum-
gas-limit-eth-price-soars

[54] S. Prabath, “The Mystery Behind Block Time,” 2017, Accessed on:
Jun 15, 2021. [Online]. Available: https://medium.facilelogin.com/the-
mystery-behind-block-time-63351e35603a

[55] “Ethereum Difficulty Chart,” 2021, Accessed on: Jun 14, 2021. [Online].
Available: https://www.coinwarz.com/mining/ethereum/difficulty-chart

[56] M. Julia, “When will Ethereum 2.0 fully launch?”
2020, Accessed on: Jun 15, 2021. [Online]. Avail-
able: https://cointelegraph.com/news/when-will-ethereum-2-0-fully-
launch-roadmap-promises-speed-but-history-says-otherwise

[57] “Proof-of-Stake (PoS),” 2021, Accessed on: Jun 15, 2021.
[Online]. Available: https://ethereum.org/en/developers/docs/consensus-
mechanisms/pos/

[58] “What is Ethereum 2.0? Overview, Features and Price
Implications,” 2020, Accessed on: Jun 15, 2021. [Online]. Avail-
able: https://www.diginex.com/insights/what-is-ethereum-2-0-overview-
features-and-price-implications/

[59] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “Fastfabric: Scaling hyper-
ledger fabric to 20 000 transactions per second,” International Journal of
Network Management, vol. 30, no. 5, p. e2099, 2020, e2099 nem.2099.

DR IMRAN MAKHDOOM is a postdoc re-
searcher at the University of Technology Sydney.
He completed his Ph.D. from the University of
Technology Sydney in 2020. His research interests
include autonomous systems, science and tech-
nology parks, blockchain, the Internet of Things,
distributed consensus, network, and computer se-
curity. Imran has published numerous articles in
some of the prestigious journals and conferences.
He has also been a Food Agility Scholar from

2019-2020 and has made a valuable contribution to data security and privacy
in the Food Tech/Agri Tech. Before this, he secured a masters degree in in-
formation security from the National University of Sciences and Technology,
Pakistan, in 2015.

KADHIM HAYAWI is an assistant professor at
the College of Technological Innovation at Zayed
University, and a member of the Cybersecurity
and Digital Forensics research group where he
teaches a wide variety of courses and pursues his
research endeavors. He received his M.Sc. degree
in Computer Science from Dalhousie University,
Canada in 2004, and a Ph.D. degree from Uni-
versity of Waterloo, Canada in 2018. He earned
several prestigious industry certifications and has

over 20 years of experience in academia, and industry. His research interests
are in tackling Information Security and Privacy challenges of Emerging
Technologies such as IoT, Industrial IoT, Fog, Cloud, and Social Networks
using Real-Time and Distributed Deep Learning, GAN, and Blockchain
Technologies.

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3117938, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

MOHAMMAD KAOSAR is currently working as
a Senior Lecturer in the Discipline of IT, Media
and Communications, Murdoch University, Aus-
tralia. Prior to that he has worked in several univer-
sities including RMIT University, Victoria Univer-
sity, Effat University and Charles Sturt University.
Dr. Kaosar has worked in number of national and
international research projects and grants. He has
published number of research papers in reputable
journals and conferences including - IEEE Trans-

action on Knowledge and Data Engineering (TKDE), Data and Knowledge
Engineering (DKE), IEEE International Conference on Data Engineering
(ICDE), Computer Communication (ComCom), IEEE SIGCOMM. He has
been supervising many postgraduate students, mentoring junior colleagues,
and collaborating with many national and international researchers. Dr.
Kaosar is an active member of various professional organizations including
– IEEE (Senior Member), Australian Computer Society (ACS), European
Alliance for Innovation (EAI), The Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (ICST), South Pacific
Competitive Programming Association, Industrial Engineering and Opera-
tion Management(IEOM).

SUJITH SAMUEL MATHEW completed his
Ph.D. in Computer Science from the University
of Adelaide, South Australia. He has twenty years
of experience working both in the IT Industry
and in IT Academia. He has held positions as
Group Leader, Technical Evangelist, and Software
Engineer within the IT industry. In academia, he
has been teaching various IT related topics and
pursuing his research interests in parallel. His re-
search interests are in ubiquitous and distributed

computing, with focus on the Internet of Things and Smart City applications.
Presently, he is an Assistant Professor at the College of Technological
Innovations (CTI), Zayed University in Abu Dhabi, UAE.

DR PIN-HAN HO is currently a full professor
in the Department of Electrical and Computer
Engineering, University of Waterloo. He is the
author/co-author of over 400 refereed technical
papers, several book chapters, and the coauthor
of two books on Internet and optical network
survivability. His current research interests cover a
wide range of topics in broadband wired and wire-
less communication networks, including wireless
transmission techniques, mobile system design

and optimization, and network dimensioning and resource allocation. He is
in the rank of IEEE Fellow and a Professional Engineer Ontario (PEO).

VOLUME 4, 2016 21

	D2Gen: A Decentralized Device Genome Based Integrity Verification Mechanism for Collaborative Intrusion Detection Systems
	Recommended Citation

	D2Gen: A Decentralized Device Genome based Integrity Verification Mechanism for Collaborative Intrusion Detection Systems

