25 research outputs found

    A Survey of Virtual Machine Placement Techniques and VM Selection Policies in Cloud Datacenter

    Get PDF
    The large scale virtualized data centers have been established due to the requirement of rapid growth in computational power driven by cloud computing model . The high energy consumption of such data centers is becoming more and more serious problem .In order to reduce the energy consumption, server consolidation techniques are used .But aggressive consolidation of VMs can lead to performance degradation. Hence another problem arise that is, the Service Level Agreement(SLA) violation. The optimized consolidation is achieved through optimized VM placement and VM selection policies . A comparative study of virtual machine placement and VM selection policies are presented in this paper for improving the energy efficiency

    Multi-Criteria Decision-Making Approach for Container-based Cloud Applications: The SWITCH and ENTICE Workbenches

    Get PDF
    Many emerging smart applications rely on the Internet of Things (IoT) to provide solutions to time-critical problems. When building such applications, a software engineer must address multiple Non-Functional Requirements (NFRs), including requirements for fast response time, low communication latency, high throughput, high energy efficiency, low operational cost and similar. Existing modern container-based software engineering approaches promise to improve the software lifecycle; however, they fail short of tools and mechanisms for NFRs management and optimisation. Our work addresses this problem with a new decision-making approach based on a Pareto Multi-Criteria optimisation. By using different instance configurations on various geo-locations, we demonstrate the suitability of our method, which narrows the search space to only optimal instances for the deployment of the containerised microservice.This solution is included in two advanced software engineering environments, the SWITCH workbench, which includes an Interactive Development Environment (IDE) and the ENTICE Virtual Machine and container images portal. The developed approach is particularly useful when building, deploying and orchestrating IoT applications across multiple computing tiers, from Edge-Cloudlet to Fog-Cloud data centres

    SLO-aware Colocation of Data Center Tasks Based on Instantaneous Processor Requirements

    Full text link
    In a cloud data center, a single physical machine simultaneously executes dozens of highly heterogeneous tasks. Such colocation results in more efficient utilization of machines, but, when tasks' requirements exceed available resources, some of the tasks might be throttled down or preempted. We analyze version 2.1 of the Google cluster trace that shows short-term (1 second) task CPU usage. Contrary to the assumptions taken by many theoretical studies, we demonstrate that the empirical distributions do not follow any single distribution. However, high percentiles of the total processor usage (summed over at least 10 tasks) can be reasonably estimated by the Gaussian distribution. We use this result for a probabilistic fit test, called the Gaussian Percentile Approximation (GPA), for standard bin-packing algorithms. To check whether a new task will fit into a machine, GPA checks whether the resulting distribution's percentile corresponding to the requested service level objective, SLO is still below the machine's capacity. In our simulation experiments, GPA resulted in colocations exceeding the machines' capacity with a frequency similar to the requested SLO.Comment: Author's version of a paper published in ACM SoCC'1

    A Measurement-based Analysis of the Energy Consumption of Data Center Servers

    Full text link
    Energy consumption is a growing issue in data centers, impacting their economic viability and their public image. In this work we empirically characterize the power and energy consumed by different types of servers. In particular, in order to understand the behavior of their energy and power consumption, we perform measurements in different servers. In each of them, we exhaustively measure the power consumed by the CPU, the disk, and the network interface under different configurations, identifying the optimal operational levels. One interesting conclusion of our study is that the curve that defines the minimal CPU power as a function of the load is neither linear nor purely convex as has been previously assumed. Moreover, we find that the efficiency of the various server components can be maximized by tuning the CPU frequency and the number of active cores as a function of the system and network load, while the block size of I/O operations should be always maximized by applications. We also show how to estimate the energy consumed by an application as a function of some simple parameters, like the CPU load, and the disk and network activity. We validate the proposed approach by accurately estimating the energy of a map-reduce computation in a Hadoop platform

    Evolutionary computing based QoS oriented energy efficient VM consolidation scheme for large scale cloud data centers using random work load bench

    Get PDF
    In order to assess the performance of an approach, it is unavoidable to inspect the performance with distinct datasets with diverse characteristics. In this paper we had assessed the system performance with random workbench datasets. A-GA (Adaptive Genetic Algorithm) based consolidation technique has been compared with other consolidation techniques including dynamic CPU utilization techniques, VM (Virtual Machine) selection and placement policies. The proposed consolidation system had exhibited better results in terms of energy conservation, minimal Service Level Agreement (SLA) violation and Quality of Service (QoS) assurance
    corecore