2,113 research outputs found

    Higher-order Projected Power Iterations for Scalable Multi-Matching

    Get PDF
    The matching of multiple objects (e.g. shapes or images) is a fundamental problem in vision and graphics. In order to robustly handle ambiguities, noise and repetitive patterns in challenging real-world settings, it is essential to take geometric consistency between points into account. Computationally, the multi-matching problem is difficult. It can be phrased as simultaneously solving multiple (NP-hard) quadratic assignment problems (QAPs) that are coupled via cycle-consistency constraints. The main limitations of existing multi-matching methods are that they either ignore geometric consistency and thus have limited robustness, or they are restricted to small-scale problems due to their (relatively) high computational cost. We address these shortcomings by introducing a Higher-order Projected Power Iteration method, which is (i) efficient and scales to tens of thousands of points, (ii) straightforward to implement, (iii) able to incorporate geometric consistency, (iv) guarantees cycle-consistent multi-matchings, and (iv) comes with theoretical convergence guarantees. Experimentally we show that our approach is superior to existing methods

    Structured Prediction Problem Archive

    Get PDF
    Structured prediction problems are one of the fundamental tools in machinelearning. In order to facilitate algorithm development for their numericalsolution, we collect in one place a large number of datasets in easy to readformats for a diverse set of problem classes. We provide archival links todatasets, description of the considered problems and problem formats, and ashort summary of problem characteristics including size, number of instancesetc. For reference we also give a non-exhaustive selection of algorithmsproposed in the literature for their solution. We hope that this centralrepository will make benchmarking and comparison to established works easier.We welcome submission of interesting new datasets and algorithms for inclusionin our archive.<br

    Structured Prediction Problem Archive

    Full text link
    Structured prediction problems are one of the fundamental tools in machine learning. In order to facilitate algorithm development for their numerical solution, we collect in one place a large number of datasets in easy to read formats for a diverse set of problem classes. We provide archival links to datasets, description of the considered problems and problem formats, and a short summary of problem characteristics including size, number of instances etc. For reference we also give a non-exhaustive selection of algorithms proposed in the literature for their solution. We hope that this central repository will make benchmarking and comparison to established works easier. We welcome submission of interesting new datasets and algorithms for inclusion in our archive.Comment: Added multicast instances from Andres grou

    Predicting Instability in Complex Oscillator Networks: Limitations and Potentials of Network Measures and Machine Learning

    Full text link
    A central question of network science is how functional properties of systems arise from their structure. For networked dynamical systems, structure is typically quantified with network measures. A functional property that is of theoretical and practical interest for oscillatory systems is the stability of synchrony to localized perturbations. Recently, Graph Neural Networks (GNNs) have been shown to predict this stability successfully; at the same time, network measures have struggled to paint a clear picture. Here we collect 46 relevant network measures and find that no small subset can reliably predict stability. The performance of GNNs can only be matched by combining all network measures and nodewise machine learning. However, unlike GNNs, this approach fails to extrapolate from network ensembles to several real power grid topologies. This suggests that correlations of network measures and function may be misleading, and that GNNs capture the causal relationship between structure and stability substantially better.Comment: 30 pages (16 pages main section), 15 figures, 4 table

    Cache Serializability: Reducing Inconsistency in Edge Transactions

    Full text link
    Read-only caches are widely used in cloud infrastructures to reduce access latency and load on backend databases. Operators view coherent caches as impractical at genuinely large scale and many client-facing caches are updated in an asynchronous manner with best-effort pipelines. Existing solutions that support cache consistency are inapplicable to this scenario since they require a round trip to the database on every cache transaction. Existing incoherent cache technologies are oblivious to transactional data access, even if the backend database supports transactions. We propose T-Cache, a novel caching policy for read-only transactions in which inconsistency is tolerable (won't cause safety violations) but undesirable (has a cost). T-Cache improves cache consistency despite asynchronous and unreliable communication between the cache and the database. We define cache-serializability, a variant of serializability that is suitable for incoherent caches, and prove that with unbounded resources T-Cache implements this new specification. With limited resources, T-Cache allows the system manager to choose a trade-off between performance and consistency. Our evaluation shows that T-Cache detects many inconsistencies with only nominal overhead. We use synthetic workloads to demonstrate the efficacy of T-Cache when data accesses are clustered and its adaptive reaction to workload changes. With workloads based on the real-world topologies, T-Cache detects 43-70% of the inconsistencies and increases the rate of consistent transactions by 33-58%.Comment: Ittay Eyal, Ken Birman, Robbert van Renesse, "Cache Serializability: Reducing Inconsistency in Edge Transactions," Distributed Computing Systems (ICDCS), IEEE 35th International Conference on, June~29 2015--July~2 201
    • …
    corecore