43 research outputs found

    Towards declarative diagnosis of constraint programs over finite domains

    Full text link
    The paper proposes a theoretical approach of the debugging of constraint programs based on a notion of explanation tree. The proposed approach is an attempt to adapt algorithmic debugging to constraint programming. In this theoretical framework for domain reduction, explanations are proof trees explaining value removals. These proof trees are defined by inductive definitions which express the removals of values as consequences of other value removals. Explanations may be considered as the essence of constraint programming. They are a declarative view of the computation trace. The diagnosis consists in locating an error in an explanation rooted by a symptom.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Forthcoming Papers

    Get PDF

    Constraint capture and maintenance in engineering design

    Get PDF
    The Designers' Workbench is a system, developed by the Advanced Knowledge Technologies (AKT) consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design as well as with the company's design rule book(s). In the principal application discussed here, the evolving design is described against a jet engine ontology. Design rules are expressed as constraints over the domain ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench's knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a system, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. Further we hypothesize that in order to appropriately apply, maintain and reuse constraints, it is necessary to understand the underlying assumptions and context in which each constraint is applicable. We refer to them as “application conditions” and these form a part of the rationale associated with the constraint. We propose a methodology to capture the application conditions associated with a constraint and demonstrate that an explicit representation (machine interpretable format) of application conditions (rationales) together with the corresponding constraints and the domain ontology can be used by a machine to support maintenance of constraints. Support for the maintenance of constraints includes detecting inconsistencies, subsumption, redundancy, fusion between constraints and suggesting appropriate refinements. The proposed methodology provides immediate benefits to the designers and hence should encourage them to input the application conditions (rationales)

    A Max-Term Counting Based Knowledge Inconsistency Checking Strategy and Inconsistency Measure Calculation of Fuzzy Knowledge Based Systems

    Get PDF
    The task of finding all the minimal inconsistent subsets plays a vital role in many theoretical works especially in large knowledge bases and it has been proved to be a NP-complete problem. In this work, at first we propose a max-term counting based knowledge inconsistency checking strategy. And, then, we put forward an algorithm for finding all minimal inconsistent subsets, in which we establish a Boolean lattice to organize the subsets of the given knowledge base and use leaf pruning to optimize the algorithm efficiency. Comparative experiments and analysis also show the algorithm’s improvement over past approaches. Finally, we give an application for inconsistency measure calculation of fuzzy knowledge based systems

    (Re)configuration based on model generation

    Full text link
    Reconfiguration is an important activity for companies selling configurable products or services which have a long life time. However, identification of a set of required changes in a legacy configuration is a hard problem, since even small changes in the requirements might imply significant modifications. In this paper we show a solution based on answer set programming, which is a logic-based knowledge representation formalism well suited for a compact description of (re)configuration problems. Its applicability is demonstrated on simple abstractions of several real-world scenarios. The evaluation of our solution on a set of benchmark instances derived from commercial (re)configuration problems shows its practical applicability.Comment: In Proceedings LoCoCo 2011, arXiv:1108.609
    corecore