163 research outputs found

    Semi-supervised semantic segmentation needs strong, varied perturbations

    Get PDF
    Consistency regularization describes a class of approaches that have yielded ground breaking results in semi-supervised classification problems. Prior work has established the cluster assumption - under which the data distribution consists of uniform class clusters of samples separated by low density regions - as important to its success. We analyze the problem of semantic segmentation and find that its' distribution does not exhibit low density regions separating classes and offer this as an explanation for why semi-supervised segmentation is a challenging problem, with only a few reports of success. We then identify choice of augmentation as key to obtaining reliable performance without such low-density regions. We find that adapted variants of the recently proposed CutOut and CutMix augmentation techniques yield state-of-the-art semi-supervised semantic segmentation results in standard datasets. Furthermore, given its challenging nature we propose that semantic segmentation acts as an effective acid test for evaluating semi-supervised regularizers. Implementation at: https://github.com/Britefury/cutmix-semisup-seg.Comment: 21 pages, 7 figures, accepted to BMVC 202

    ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning

    Full text link
    The state of the art in semantic segmentation is steadily increasing in performance, resulting in more precise and reliable segmentations in many different applications. However, progress is limited by the cost of generating labels for training, which sometimes requires hours of manual labor for a single image. Because of this, semi-supervised methods have been applied to this task, with varying degrees of success. A key challenge is that common augmentations used in semi-supervised classification are less effective for semantic segmentation. We propose a novel data augmentation mechanism called ClassMix, which generates augmentations by mixing unlabelled samples, by leveraging on the network's predictions for respecting object boundaries. We evaluate this augmentation technique on two common semi-supervised semantic segmentation benchmarks, showing that it attains state-of-the-art results. Lastly, we also provide extensive ablation studies comparing different design decisions and training regimes.Comment: This paper has been accepted to WACV202

    Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization

    Full text link
    Semi-supervised semantic segmentation requires the model to effectively propagate the label information from limited annotated images to unlabeled ones. A challenge for such a per-pixel prediction task is the large intra-class variation, i.e., regions belonging to the same class may exhibit a very different appearance even in the same picture. This diversity will make the label propagation hard from pixels to pixels. To address this problem, we propose a novel approach to regularize the distribution of within-class features to ease label propagation difficulty. Specifically, our approach encourages the consistency between the prediction from a linear predictor and the output from a prototype-based predictor, which implicitly encourages features from the same pseudo-class to be close to at least one within-class prototype while staying far from the other between-class prototypes. By further incorporating CutMix operations and a carefully-designed prototype maintenance strategy, we create a semi-supervised semantic segmentation algorithm that demonstrates superior performance over the state-of-the-art methods from extensive experimental evaluation on both Pascal VOC and Cityscapes benchmarks.Comment: Accepted to NeurIPS 202

    Switching Temporary Teachers for Semi-Supervised Semantic Segmentation

    Full text link
    The teacher-student framework, prevalent in semi-supervised semantic segmentation, mainly employs the exponential moving average (EMA) to update a single teacher's weights based on the student's. However, EMA updates raise a problem in that the weights of the teacher and student are getting coupled, causing a potential performance bottleneck. Furthermore, this problem may become more severe when training with more complicated labels such as segmentation masks but with few annotated data. This paper introduces Dual Teacher, a simple yet effective approach that employs dual temporary teachers aiming to alleviate the coupling problem for the student. The temporary teachers work in shifts and are progressively improved, so consistently prevent the teacher and student from becoming excessively close. Specifically, the temporary teachers periodically take turns generating pseudo-labels to train a student model and maintain the distinct characteristics of the student model for each epoch. Consequently, Dual Teacher achieves competitive performance on the PASCAL VOC, Cityscapes, and ADE20K benchmarks with remarkably shorter training times than state-of-the-art methods. Moreover, we demonstrate that our approach is model-agnostic and compatible with both CNN- and Transformer-based models. Code is available at \url{https://github.com/naver-ai/dual-teacher}.Comment: NeurIPS-202

    Augmentation Matters: A Simple-yet-Effective Approach to Semi-supervised Semantic Segmentation

    Full text link
    Recent studies on semi-supervised semantic segmentation (SSS) have seen fast progress. Despite their promising performance, current state-of-the-art methods tend to increasingly complex designs at the cost of introducing more network components and additional training procedures. Differently, in this work, we follow a standard teacher-student framework and propose AugSeg, a simple and clean approach that focuses mainly on data perturbations to boost the SSS performance. We argue that various data augmentations should be adjusted to better adapt to the semi-supervised scenarios instead of directly applying these techniques from supervised learning. Specifically, we adopt a simplified intensity-based augmentation that selects a random number of data transformations with uniformly sampling distortion strengths from a continuous space. Based on the estimated confidence of the model on different unlabeled samples, we also randomly inject labelled information to augment the unlabeled samples in an adaptive manner. Without bells and whistles, our simple AugSeg can readily achieve new state-of-the-art performance on SSS benchmarks under different partition protocols.Comment: 10 pages, 8 table

    S5^{5}Mars: Semi-Supervised Learning for Mars Semantic Segmentation

    Full text link
    Deep learning has become a powerful tool for Mars exploration. Mars terrain semantic segmentation is an important Martian vision task, which is the base of rover autonomous planning and safe driving. However, there is a lack of sufficient detailed and high-confidence data annotations, which are exactly required by most deep learning methods to obtain a good model. To address this problem, we propose our solution from the perspective of joint data and method design. We first present a newdataset S5Mars for Semi-SuperviSed learning on Mars Semantic Segmentation, which contains 6K high-resolution images and is sparsely annotated based on confidence, ensuring the high quality of labels. Then to learn from this sparse data, we propose a semi-supervised learning (SSL) framework for Mars image semantic segmentation, to learn representations from limited labeled data. Different from the existing SSL methods which are mostly targeted at the Earth image data, our method takes into account Mars data characteristics. Specifically, we first investigate the impact of current widely used natural image augmentations on Mars images. Based on the analysis, we then proposed two novel and effective augmentations for SSL of Mars segmentation, AugIN and SAM-Mix, which serve as strong augmentations to boost the model performance. Meanwhile, to fully leverage the unlabeled data, we introduce a soft-to-hard consistency learning strategy, learning from different targets based on prediction confidence. Experimental results show that our method can outperform state-of-the-art SSL approaches remarkably. Our proposed dataset is available at https://jhang2020.github.io/S5Mars.github.io/

    Co-training with High-Confidence Pseudo Labels for Semi-supervised Medical Image Segmentation

    Full text link
    Consistency regularization and pseudo labeling-based semi-supervised methods perform co-training using the pseudo labels from multi-view inputs. However, such co-training models tend to converge early to a consensus, degenerating to the self-training ones, and produce low-confidence pseudo labels from the perturbed inputs during training. To address these issues, we propose an Uncertainty-guided Collaborative Mean-Teacher (UCMT) for semi-supervised semantic segmentation with the high-confidence pseudo labels. Concretely, UCMT consists of two main components: 1) collaborative mean-teacher (CMT) for encouraging model disagreement and performing co-training between the sub-networks, and 2) uncertainty-guided region mix (UMIX) for manipulating the input images according to the uncertainty maps of CMT and facilitating CMT to produce high-confidence pseudo labels. Combining the strengths of UMIX with CMT, UCMT can retain model disagreement and enhance the quality of pseudo labels for the co-training segmentation. Extensive experiments on four public medical image datasets including 2D and 3D modalities demonstrate the superiority of UCMT over the state-of-the-art. Code is available at: https://github.com/Senyh/UCMT

    Instance-specific and Model-adaptive Supervision for Semi-supervised Semantic Segmentation

    Full text link
    Recently, semi-supervised semantic segmentation has achieved promising performance with a small fraction of labeled data. However, most existing studies treat all unlabeled data equally and barely consider the differences and training difficulties among unlabeled instances. Differentiating unlabeled instances can promote instance-specific supervision to adapt to the model's evolution dynamically. In this paper, we emphasize the cruciality of instance differences and propose an instance-specific and model-adaptive supervision for semi-supervised semantic segmentation, named iMAS. Relying on the model's performance, iMAS employs a class-weighted symmetric intersection-over-union to evaluate quantitative hardness of each unlabeled instance and supervises the training on unlabeled data in a model-adaptive manner. Specifically, iMAS learns from unlabeled instances progressively by weighing their corresponding consistency losses based on the evaluated hardness. Besides, iMAS dynamically adjusts the augmentation for each instance such that the distortion degree of augmented instances is adapted to the model's generalization capability across the training course. Not integrating additional losses and training procedures, iMAS can obtain remarkable performance gains against current state-of-the-art approaches on segmentation benchmarks under different semi-supervised partition protocols
    corecore