3 research outputs found

    Constructing Minimal Perfect Hash Functions Using SAT Technology

    Full text link
    Minimal perfect hash functions (MPHFs) are used to provide efficient access to values of large dictionaries (sets of key-value pairs). Discovering new algorithms for building MPHFs is an area of active research, especially from the perspective of storage efficiency. The information-theoretic limit for MPHFs is 1/(ln 2) or roughly 1.44 bits per key. The current best practical algorithms range between 2 and 4 bits per key. In this article, we propose two SAT-based constructions of MPHFs. Our first construction yields MPHFs near the information-theoretic limit. For this construction, current state-of-the-art SAT solvers can handle instances where the dictionaries contain up to 40 elements, thereby outperforming the existing (brute-force) methods. Our second construction uses XOR-SAT filters to realize a practical approach with long-term storage of approximately 1.83 bits per key.Comment: Accepted for AAAI 202
    corecore