1,048 research outputs found

    A Distinguisher-Based Attack on a Variant of McEliece's Cryptosystem Based on Reed-Solomon Codes

    Full text link
    Baldi et \textit{al.} proposed a variant of McEliece's cryptosystem. The main idea is to replace its permutation matrix by adding to it a rank 1 matrix. The motivation for this change is twofold: it would allow the use of codes that were shown to be insecure in the original McEliece's cryptosystem, and it would reduce the key size while keeping the same security against generic decoding attacks. The authors suggest to use generalized Reed-Solomon codes instead of Goppa codes. The public code built with this method is not anymore a generalized Reed-Solomon code. On the other hand, it contains a very large secret generalized Reed-Solomon code. In this paper we present an attack that is built upon a distinguisher which is able to identify elements of this secret code. The distinguisher is constructed by considering the code generated by component-wise products of codewords of the public code (the so-called "square code"). By using square-code dimension considerations, the initial generalized Reed-Solomon code can be recovered which permits to decode any ciphertext. A similar technique has already been successful for mounting an attack against a homomorphic encryption scheme suggested by Bogdanoc et \textit{al.}. This work can be viewed as another illustration of how a distinguisher of Reed-Solomon codes can be used to devise an attack on cryptosystems based on them.Comment: arXiv admin note: substantial text overlap with arXiv:1203.668

    LEDAkem: a post-quantum key encapsulation mechanism based on QC-LDPC codes

    Full text link
    This work presents a new code-based key encapsulation mechanism (KEM) called LEDAkem. It is built on the Niederreiter cryptosystem and relies on quasi-cyclic low-density parity-check codes as secret codes, providing high decoding speeds and compact keypairs. LEDAkem uses ephemeral keys to foil known statistical attacks, and takes advantage of a new decoding algorithm that provides faster decoding than the classical bit-flipping decoder commonly adopted in this kind of systems. The main attacks against LEDAkem are investigated, taking into account quantum speedups. Some instances of LEDAkem are designed to achieve different security levels against classical and quantum computers. Some performance figures obtained through an efficient C99 implementation of LEDAkem are provided.Comment: 21 pages, 3 table

    Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

    Full text link
    In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.Comment: 16 pages. The final publication is available at springerlink.co

    A Non-commutative Cryptosystem Based on Quaternion Algebras

    Full text link
    We propose BQTRU, a non-commutative NTRU-like cryptosystem over quaternion algebras. This cryptosystem uses bivariate polynomials as the underling ring. The multiplication operation in our cryptosystem can be performed with high speed using quaternions algebras over finite rings. As a consequence, the key generation and encryption process of our cryptosystem is faster than NTRU in comparable parameters. Typically using Strassen's method, the key generation and encryption process is approximately 16/716/7 times faster than NTRU for an equivalent parameter set. Moreover, the BQTRU lattice has a hybrid structure that makes inefficient standard lattice attacks on the private key. This entails a higher computational complexity for attackers providing the opportunity of having smaller key sizes. Consequently, in this sense, BQTRU is more resistant than NTRU against known attacks at an equivalent parameter set. Moreover, message protection is feasible through larger polynomials and this allows us to obtain the same security level as other NTRU-like cryptosystems but using lower dimensions.Comment: Submitted for possible publicatio
    corecore