3,915 research outputs found

    Endpoint-transparent Multipath Transport with Software-defined Networks

    Full text link
    Multipath forwarding consists of using multiple paths simultaneously to transport data over the network. While most such techniques require endpoint modifications, we investigate how multipath forwarding can be done inside the network, transparently to endpoint hosts. With such a network-centric approach, packet reordering becomes a critical issue as it may cause critical performance degradation. We present a Software Defined Network architecture which automatically sets up multipath forwarding, including solutions for reordering and performance improvement, both at the sending side through multipath scheduling algorithms, and the receiver side, by resequencing out-of-order packets in a dedicated in-network buffer. We implemented a prototype with commonly available technology and evaluated it in both emulated and real networks. Our results show consistent throughput improvements, thanks to the use of aggregated path capacity. We give comparisons to Multipath TCP, where we show our approach can achieve a similar performance while offering the advantage of endpoint transparency

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Performance evaluation of multipath transport protocol in heterogeneous network environments

    Get PDF
    Performance of multipath transport protocols is known to be sensitive to path asymmetry. The difference between each path in terms of bandwidth, delay and packet loss has a potential to significantly decrease the overall performance of a data flow carried over multiple asymmetric paths. In this paper, we evaluate and analyse reliable data transfer in Concurrent Multipath Transfer extension of Stream Control Transport Protocol (CMT-SCTP) under various conditions of network asymmetry, with a focus on the use case where 3G and Wi-Fi networks are simultaneously available. We identify various causes of performance degradation, review the impact of CMT-SACK extension under path asymmetry and show that the total achievable goodput of a reliable in-order data flow over multiple heterogeneous paths is ruled by the characteristics of the worst path as perceived by the transport protocol. To support our study, we derive a simple analytical model of the receiver window blocking and validate it via simulation

    TCP in 5G mmWave Networks: Link Level Retransmissions and MP-TCP

    Full text link
    MmWave communications, one of the cornerstones of future 5G mobile networks, are characterized at the same time by a potential multi-gigabit capacity and by a very dynamic channel, sensitive to blockage, wide fluctuations in the received signal quality, and possibly also sudden link disruption. While the performance of physical and MAC layer schemes that address these issues has been thoroughly investigated in the literature, the complex interactions between mmWave links and transport layer protocols such as TCP are still relatively unexplored. This paper uses the ns-3 mmWave module, with its channel model based on real measurements in New York City, to analyze the performance of the Linux TCP/IP stack (i) with and without link-layer retransmissions, showing that they are fundamental to reach a high TCP throughput on mmWave links and (ii) with Multipath TCP (MP-TCP) over multiple LTE and mmWave links, illustrating which are the throughput-optimal combinations of secondary paths and congestion control algorithms in different conditions.Comment: 6 pages, 11 figures, accepted for presentation at the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Fixed-Mobile Convergence in the 5G era: From Hybrid Access to Converged Core

    Get PDF
    The availability of different paths to communicate to a user or device introduces several benefits, from boosting enduser performance to improving network utilization. Hybrid access is a first step in enabling convergence of mobile and fixed networks, however, despite traffic optimization, this approach is limited as fixed and mobile are still two separate core networks inter-connected through an aggregation point. On the road to 5G networks, the design trend is moving towards an aggregated network, where different access technologies share a common anchor point in the core. This enables further network optimization in addition to hybrid access, examples are userspecific policies for aggregation and improved traffic balancing across different accesses according to user, network, and service context. This paper aims to discuss the ongoing work around hybrid access and network convergence by Broadband Forum and 3GPP. We present some testbed results on hybrid access and analyze some primary performance indicators such as achievable data rates, link utilization for aggregated traffic and session setup latency. We finally discuss the future directions for network convergence to enable future scenarios with enhanced configuration capabilities for fixed and mobile convergence.Comment: to appear in IEEE Networ
    corecore