1,139 research outputs found

    Mobility management in 5G for high-speed trains

    Get PDF
    High-speed trains (HST) are nowadays more present in our lives currently, some of them can reach speeds up to 500 km/h and futuristic concepts such as hyperloop tunnels could make trains travel at speeds up to 1000 km/h. Dealing with such high speeds arises many communication problems, for example, in mobility management, with many handovers or high Doppler frequency shifts. You might be thinking how it is possible to provide a good QoS to the users inside the train, when traveling at such elevated velocities. In the thesis, we rely on the development of 5G New Radio and the benefits associated, such as a new handover protocol introduced by 3GPP called conditional handover (CHO). By simulating with Simu5G a HST scenario we have proved that CHO can provide a better service to the users by improving the SINR levels and being more efficient than common handover.Los trenes de alta velocidad están cada vez más presentes en nuestro día a día, algunos ya alcanzan velocidades de 500 km/h, mientras que otros conceptos futuristas como los túneles hyperloop podrían hacer que alcanzaran velocidades de hasta 1000 km/h. En el ámbito de las telecomunicaciones, trabajar a tan altas velocidades conlleva algunos problemas, como por ejemplo un elevado número de handovers. Seguramente, os estéis preguntando cómo es posible establecer un servicio que cumpla unos mínimos de calidad para el usuario, cuando este viaja a tan altas velocidades. Para ello, nos hemos apoyado en la tecnología 5G i un nuevo concepto de handover llamado conditional handover (CHO), introducido por el 3GPP. A través del simulador Simu5G, hemos conseguido demostrar que el CHO no solo es un protocolo más eficiente, sino que además conlleva una mejora en los niveles de SINR, en condiciones parecidas a las de un tren de alta velocidad.Els trens d'alta velocitat estan cada vegada més presents en el nostre dia a dia, alguns ja son capaços d'arribar a velocitats pròximes als 500 km/h, mentre que altres conceptes futuristes com els túnels hyperloop podrien fer que els trens arribessin a velocitats de 1000 km/h. En l'àmbit de les comunicacions, treballar amb velocitats tan elevades comporta alguns problemes, com per exemple un ampli número de handovers. Segurament, estareu pensant com es possible establir un servei que compleixi uns mínims de qualitat de cara a l'usuari, al estar treballant amb velocitats tant elevades. Per fer-ho ens hem recolzat en la tecnologia 5G i un nou concepte de handover presentat pel 3GPP, el conditional handover (CHO). Simulant a través de Simu5G un escenari similar al d'un tren d'alta velocitat, hem pogut demostrar que el CHO no es només un protocol més eficient que el handover normal, sinó que a més a més millora els nivells de SINR

    6G Enabled Advanced Transportation Systems

    Full text link
    The 6th generation (6G) wireless communication network is envisaged to be able to change our lives drastically, including transportation. In this paper, two ways of interactions between 6G communication networks and transportation are introduced. With the new usage scenarios and capabilities 6G is going to support, passengers on all sorts of transportation systems will be able to get data more easily, even in the most remote areas on the planet. The quality of communication will also be improved significantly, thanks to the advanced capabilities of 6G. On top of providing seamless and ubiquitous connectivity to all forms of transportation, 6G will also transform the transportation systems to make them more intelligent, more efficient, and safer. Based on the latest research and standardization progresses, technical analysis on how 6G can empower advanced transportation systems are provided, as well as challenges and insights for a possible road ahead.Comment: Submitted to an open access journa

    Mobility Solutions for 5G New Radio over Low-Earth Orbit Satellite Networks

    Get PDF

    Integration of Data Driven Technologies in Smart Grids for Resilient and Sustainable Smart Cities: A Comprehensive Review

    Full text link
    A modern-day society demands resilient, reliable, and smart urban infrastructure for effective and in telligent operations and deployment. However, unexpected, high-impact, and low-probability events such as earthquakes, tsunamis, tornadoes, and hurricanes make the design of such robust infrastructure more complex. As a result of such events, a power system infrastructure can be severely affected, leading to unprecedented events, such as blackouts. Nevertheless, the integration of smart grids into the existing framework of smart cities adds to their resilience. Therefore, designing a resilient and reliable power system network is an inevitable requirement of modern smart city infras tructure. With the deployment of the Internet of Things (IoT), smart cities infrastructures have taken a transformational turn towards introducing technologies that do not only provide ease and comfort to the citizens but are also feasible in terms of sustainability and dependability. This paper presents a holistic view of a resilient and sustainable smart city architecture that utilizes IoT, big data analytics, unmanned aerial vehicles, and smart grids through intelligent integration of renew able energy resources. In addition, the impact of disasters on the power system infrastructure is investigated and different types of optimization techniques that can be used to sustain the power flow in the network during disturbances are compared and analyzed. Furthermore, a comparative review analysis of different data-driven machine learning techniques for sustainable smart cities is performed along with the discussion on open research issues and challenges

    Photochemistry in Terrestrial Exoplanet Atmospheres III: Photochemistry and Thermochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    Get PDF
    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO2 rather than CH4 or CO in a H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons (C2H2 and C2H4). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b like planets we find that (1) C2H2 features at 1.0 and 1.5 micron in transmission and C2H2 and C2H4 features at 9-14 micron in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.Comment: Accepted for publication on Ap

    Circuit-Variant Moving Target Defense for Side-Channel Attacks on Reconfigurable Hardware

    Get PDF
    With the emergence of side-channel analysis (SCA) attacks, bits of a secret key may be derived by correlating key values with physical properties of cryptographic process execution. Power and Electromagnetic (EM) analysis attacks are based on the principle that current flow within a cryptographic device is key-dependent and therefore, the resulting power consumption and EM emanations during encryption and/or decryption can be correlated to secret key values. These side-channel attacks require several measurements of the target process in order to amplify the signal of interest, filter out noise, and derive the secret key through statistical analysis methods. Differential power and EM analysis attacks rely on correlating actual side-channel measurements to hypothetical models. This research proposes increasing resistance to differential power and EM analysis attacks through structural and spatial randomization of an implementation. By introducing randomly located circuit variants of encryption components, the proposed moving target defense aims to disrupt side-channel collection and correlation needed to successfully implement an attac

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well
    • …
    corecore