9,678 research outputs found

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    A fuzzy-based reliaility for JXTA-overlay P2P platform considering data download speed, peer congestion situation, number of interaction and packet loss parameters

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we propose and evaluate a new fuzzy-based reliability system for Peer-to-Peer (P2P) communications in JXTA-Overlay platform considering as a new parameter the peer congestion situation. In our system, we considered four input parameters: Data Download Speed (DDS), Peer Congestion Situation (PCS), Number of Interactions (NI) and Packet Loss (PL) to decide the Peer Reliability (PR). We evaluate the proposed system by computer simulations. The simulation results have shown that the proposed system has a good performance and can choose reliable peers to connect in JXTA-Overlay platform.Peer ReviewedPostprint (author's final draft

    A fuzzy-based reliability system for JXTA-overlay P2P platform considering as new parameter sustained communication time

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we propose and evaluate a new fuzzy-based reliability system for Peer-to-Peer (P2P) Communications in JXTA-Overlay platform considering as a new parameter the sustained communication time. In our system, we considered four input parameters: Data Download Speed (DDS), Local Score (LS), Number of Interactions (NI) and Sustained Communication Time (SCT) to decide the Peer Reliability (PR). We evaluate the proposed system by computer simulations. The simulation results have shown that the proposed system has a good performance and can choose reliable peers to connect in JXTA-Overlay platform.Peer ReviewedPostprint (author's final draft

    Google Maps to collect spatial responses in a survey environment

    Get PDF
    This paper examines the use of Google Maps-based tools to collect spatial responses from participants during academic research surveys conducted via the Internet. Using two recent examples from the University of East Anglia it discusses the online survey context and how Google Maps was used, issues surrounding the technical implementation of these tools, processing and use of the collected data, and concludes with considerations for future research that might employ similar methods

    Effects of sustained communication time on reliability of JXTA-Overlay P2P platform: a comparison study for two fuzzy-based systems

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In P2P systems, each peer has to obtain information of other peers and propagate the information to other peers through neighboring peers. Thus, it is important for each peer to have some number of neighbor peers. Moreover, it is more significant to discuss if each peer has reliable neighbor peers. In reality, each peer might be faulty or might send obsolete, even incorrect information to the other peers. We have implemented a P2P platform called JXTA-Orverlay, which defines a set of protocols that standardize how different devices may communicate and collaborate among them. JXTA-Overlay provides a set of basic functionalities, primitives, intended to be as complete as possible to satisfy the needs of most JXTA-based applications. In this paper, we present two fuzzy-based systems (called FPRS1 and FPRS2) to improve the reliability of JXTA-Overlay P2P platform. We make a comparison study between the fuzzy-based reliability systems. Comparing the complexity of FPRS1 and FPRS2, the FPRS2 is more complex than FPRS1. However, it considers also the sustained communication time which makes the platform more reliable.Peer ReviewedPostprint (author's final draft
    • 

    corecore