6,739 research outputs found

    Conserved- and zero-mean quadratic quantities in oscillatory systems

    No full text
    We study quadratic functionals of the variables of a linear oscillatory system and their derivatives. We show that such functionals are partitioned in conserved quantities and in trivially- and intrinsic zero-mean quantities. We also state an equipartition of energy principle for oscillatory systems

    Autonomous linear lossless systems

    No full text
    We define a lossless autonomous system as one having a quadratic differential form associated with it called an energy function, which is positive and which is conserved. We define an oscillatory system as one which has all its trajectories bounded on the entire time axis. In this paper, we show that an autonomous system is lossless if and only if it is oscillatory. Next we discuss a few properties of energy functions of autonomous lossless systems and a suitable way of splitting a given energy function into its kinetic and potential energy components

    A polynomial approach to the realization of J-lossless behaviours

    Get PDF
    In this paper, a class of behaviours known as J-lossless behaviours is introduced, where J is a symmetric two-variable polynomial matrix. For a certain J, it is shown that the resulting set of J-lossless behaviours are SISO behaviours such that for each of such behaviours, there exists a quadratic differential form which is positive for nonzero trajectories of the behaviour and whose derivative is equal to the product of the input variable and the derivative of the output variable. Earlier, Van der Schaft and Oeloff had considered a specific form of realization for such behaviours that plays an important role in their model reduction procedure. In our paper, we give a method of computation of a state space realization from a transfer function of such a behaviour in the same form as considered by Van der Schaft and Oeloff, using polynomial algebraic methods. Apart from being useful in enlarging the scope of the model reduction procedure of Van der Schaft and Oeloff, we show that our method of realization also has application in the synthesis of lossless mechanical systems with given transfer functions using springs and masses

    Classical Supersymmetric Mechanics

    Get PDF
    We analyse a supersymmetric mechanical model derived from (1+1)-dimensional field theory with Yukawa interaction, assuming that all physical variables take their values in a Grassmann algebra B. Utilizing the symmetries of the model we demonstrate how for a certain class of potentials the equations of motion can be solved completely for any B. In a second approach we suppose that the Grassmann algebra is finitely generated, decompose the dynamical variables into real components and devise a layer-by-layer strategy to solve the equations of motion for arbitrary potential. We examine the possible types of motion for both bosonic and fermionic quantities and show how symmetries relate the former to the latter in a geometrical way. In particular, we investigate oscillatory motion, applying results of Floquet theory, in order to elucidate the role that energy variations of the lower order quantities play in determining the quantities of higher order in B.Comment: 29 pages, 2 figures, submitted to Annals of Physic

    Phasing of gravitational waves from inspiralling eccentric binaries

    Full text link
    We provide a method for analytically constructing high-accuracy templates for the gravitational wave signals emitted by compact binaries moving in inspiralling eccentric orbits. By contrast to the simpler problem of modeling the gravitational wave signals emitted by inspiralling {\it circular} orbits, which contain only two different time scales, namely those associated with the orbital motion and the radiation reaction, the case of {\it inspiralling eccentric} orbits involves {\it three different time scales}: orbital period, periastron precession and radiation-reaction time scales. By using an improved `method of variation of constants', we show how to combine these three time scales, without making the usual approximation of treating the radiative time scale as an adiabatic process. We explicitly implement our method at the 2.5PN post-Newtonian accuracy. Our final results can be viewed as computing new `post-adiabatic' short period contributions to the orbital phasing, or equivalently, new short-period contributions to the gravitational wave polarizations, h+,×h_{+,\times}, that should be explicitly added to the `post-Newtonian' expansion for h+,×h_{+,\times}, if one treats radiative effects on the orbital phasing of the latter in the usual adiabatic approximation. Our results should be of importance both for the LIGO/VIRGO/GEO network of ground based interferometric gravitational wave detectors (especially if Kozai oscillations turn out to be significant in globular cluster triplets), and for the future space-based interferometer LISA.Comment: 49 pages, 6 figures, high quality figures upon reques

    Oscillatory spatially periodic weakly nonlinear gravity waves on deep water

    Get PDF
    A weakly nonlinear Hamiltonian model is derived from the exact water wave equations to study the time evolution of spatially periodic wavetrains. The model assumes that the spatial spectrum of the wavetrain is formed by only three free waves, i.e. a carrier and two side bands. The model has the same symmetries and invariances as the exact equations. As a result, it is found that not only the permanent form travelling waves and their stability are important in describing the time evolution of the waves, but also a new kind of family of solutions which has two basic frequencies plays a crucial role in the dynamics of the waves. It is also shown that three is the minimum number of free waves which is necessary to have chaotic behaviour of water waves
    • 

    corecore