13,644 research outputs found

    A nonequilibrium extension of the Clausius heat theorem

    Full text link
    We generalize the Clausius (in)equality to overdamped mesoscopic and macroscopic diffusions in the presence of nonconservative forces. In contrast to previous frameworks, we use a decomposition scheme for heat which is based on an exact variant of the Minimum Entropy Production Principle as obtained from dynamical fluctuation theory. This new extended heat theorem holds true for arbitrary driving and does not require assumptions of local or close to equilibrium. The argument remains exactly intact for diffusing fields where the fields correspond to macroscopic profiles of interacting particles under hydrodynamic fluctuations. We also show that the change of Shannon entropy is related to the antisymmetric part under a modified time-reversal of the time-integrated entropy flux.Comment: 23 pages; v2: manuscript significantly extende

    Neutralino Dark Matter in 2005

    Full text link
    I summarize some recent work on supersymmetric neutralinos as candidates for cold Dark Matter in the Universe. This includes a new scan of mSUGRA parameter space, with special emphasis on neutralinos annihilating predominantly through exchange of the light CP--even Higgs boson, and on bounds on sparticle masses. Next, prospects of testing models with TeV higgsino--like Dark Matter at colliders are discussed. Finally, I briefly comment on extensions of the mSUGRA model, and on scenarios with non--standard cosmology.Comment: Plenary talk at PASCOS05, Gyeongju, Korea, June 2005; 14 pages, 3 figures (included

    Spectral Theory of Time Dispersive and Dissipative Systems

    Full text link
    We study linear time dispersive and dissipative systems. Very often such systems are not conservative and the standard spectral theory can not be applied. We develop a mathematically consistent framework allowing (i) to constructively determine if a given time dispersive system can be extended to a conservative one; (ii) to construct that very conservative system -- which we show is essentially unique. We illustrate the method by applying it to the spectral analysis of time dispersive dielectrics and the damped oscillator with retarded friction. In particular, we obtain a conservative extension of the Maxwell equations which is equivalent to the original Maxwell equations for a dispersive and lossy dielectric medium.Comment: LaTeX, 57 Pages, incorporated revisions corresponding with published versio

    Covariant hamiltonian dynamics

    Get PDF
    We discuss the covariant formulation of the dynamics of particles with abelian and non-abelian gauge charges in external fields. Using this formulation we develop an algorithm for the construction of constants of motion, which makes use of a generalization of the concept of Killing vectors and tensors in differential geometry. We apply the formalism to the motion of classical charges in abelian and non-abelian monopole fieldsComment: 15 pages, no figure

    The modal logic of arithmetic potentialism and the universal algorithm

    Full text link
    I investigate the modal commitments of various conceptions of the philosophy of arithmetic potentialism. Specifically, I consider the natural potentialist systems arising from the models of arithmetic under their natural extension concepts, such as end-extensions, arbitrary extensions, conservative extensions and more. In these potentialist systems, I show, the propositional modal assertions that are valid with respect to all arithmetic assertions with parameters are exactly the assertions of S4. With respect to sentences, however, the validities of a model lie between S4 and S5, and these bounds are sharp in that there are models realizing both endpoints. For a model of arithmetic to validate S5 is precisely to fulfill the arithmetic maximality principle, which asserts that every possibly necessary statement is already true, and these models are equivalently characterized as those satisfying a maximal Σ1\Sigma_1 theory. The main S4 analysis makes fundamental use of the universal algorithm, of which this article provides a simplified, self-contained account. The paper concludes with a discussion of how the philosophical differences of several fundamentally different potentialist attitudes---linear inevitability, convergent potentialism and radical branching possibility---are expressed by their corresponding potentialist modal validities.Comment: 38 pages. Inquiries and commentary can be made at http://jdh.hamkins.org/arithmetic-potentialism-and-the-universal-algorithm. Version v3 has further minor revisions, including additional reference

    Identifying Quantum Structures in the Ellsberg Paradox

    Full text link
    Empirical evidence has confirmed that quantum effects occur frequently also outside the microscopic domain, while quantum structures satisfactorily model various situations in several areas of science, including biological, cognitive and social processes. In this paper, we elaborate a quantum mechanical model which faithfully describes the 'Ellsberg paradox' in economics, showing that the mathematical formalism of quantum mechanics is capable to represent the 'ambiguity' present in this kind of situations, because of the presence of 'contextuality'. Then, we analyze the data collected in a concrete experiment we performed on the Ellsberg paradox and work out a complete representation of them in complex Hilbert space. We prove that the presence of quantum structure is genuine, that is, 'interference' and 'superposition' in a complex Hilbert space are really necessary to describe the conceptual situation presented by Ellsberg. Moreover, our approach sheds light on 'ambiguity laden' decision processes in economics and decision theory, and allows to deal with different Ellsberg-type generalizations, e.g., the 'Machina paradox'.Comment: 16 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1208.235

    Models of nonlinear kinematic hardening based on different versions of rate-independent maxwell fluid

    Get PDF
    Different models of finite strain plasticity with a nonlinear kinematic hardening are analyzed in a systematic way. All the models are based on a certain formulation of a rate-independent Maxwell fluid, which is used to render the evolution of backstresses. The properties of each material model are determined by the underlying formulation of the Maxwell fluid. The analyzed approaches include the multiplicative hyperelastoplasticity, additive hypoelasto-plasticity and the use of generalized strain measures. The models are compared with respect to different classification criteria, such as the objectivity, thermodynamic consistency, pure volumetric-isochoric split, shear stress oscillation, exact integrability, and w-invariance
    corecore