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Abstract. Different models of finite strain plasticity with a nonlinear kinematic harden-
ing are analyzed in a systematic way. All the models are based on a certain formulation
of a rate-independent Maxwell fluid, which is used to render the evolution of backstresses.
The properties of each material model are determined by the underlying formulation
of the Maxwell fluid. The analyzed approaches include the multiplicative hyperelasto-
plasticity, additive hypoelasto-plasticity and the use of generalized strain measures. The
models are compared with respect to different classification criteria, such as the objectiv-
ity, thermodynamic consistency, pure volumetric-isochoric split, shear stress oscillation,
exact integrability, and w-invariance.

1 INTRODUCTION

As is well known, a correct numerical analysis of residual stresses and springback is
possible only if the material model accounts for the nonlinear kinematic hardening. Nowa-
days, there is a big variety of phenomenological approaches to the nonlinear kinematic
hardening and different formulations may be available for the same approach. Even more,
some new approaches are occasionally developed, which are effectively equivalent to the
already existing ones. Thus, there is a need for a unifying classification study. Here,
some of the basic approaches are compared in a qualitative way, using a set of classifi-
cation criteria. These criteria include the objectivity (frame invariance), thermodynamic
consistency, pure split of the stress response into volumetric and isochoric parts, stress
oscillation under simple shear, integrability of the elastic formulation, and w-invariance.
We discuss the hyperelasto-plasticity based on the multiplicative split of the deforma-
tion gradient, hypoelasto-plasticity based on the additive split of the strain rate tensor
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with different corotational and non-corotational stress rates, and a model employing the
structure of the small-strain plasticity in combination with a generalized strain measure.

Second- and fourth-rank tensors in R3 are denoted by bold symbols. The trace, trans-
position, inverse of transposed, determinant, and Frobenius norm are denoted respectively
by tr(·), (·)T, (·)-T, det(·). The deviatoric part, symmetric part, and scalar product of
two second-rank tensors are defined through

YD := Y −
1

3
tr(Y) 1, sym(Y) :=

1

2
(Y +YT), A : B := tr(AT B). (1)

Here, 1 stands for the identity tensor. The Frobenius norm and the unimodular part are
defined as follows

�Y� :=
√
Y : Y =

√
tr(YT Y), Y := (det(Y))−1/3 Y. (2)

2 SMALL STRAIN CASE

Let us consider a small-strain model of an elasto-plastic material with a nonlinear
kinematic hardening. The overall infinitesimal strain tensor ε is decomposed additively
into the inelastic (plastic) strain εi and the elastic strain εe. The inelastic strain, in turn,
is decomposed into the dissipative part εii and the conservative part εie

ε = εi + εe, εi = εii + εie. (3)

The Helmholz free energy per unit mass is a sum of the elastic part ψel and the part ψkin,
related to the kinematic hardening:

ψ = ψ(εe, εie) = ψel(εe) + ψkin(εie), (4)

ρψel(εe) =
k

2
(trεe)

2 + µεDe : εDe , ρψkin(εie) =
c

2
εDie : ε

D
ie, (5)

where ρ is the mass density, k and µ are the elastic constants, and c is the bulk modulus of
the substructure. The stress tensor σ and the backstress tensor x are evaluated through

σ = ρ
∂ψel(εe)

∂εe
, x = ρ

∂ψkin(εie)

∂εie
, (6)

σ = k tr(εe)1+ 2µ εDe , x = c εDie. (7)

Let K ≥ 0 be the initial uniaxial yield stress of the material. Neglecting the isotropic
hardening, the yield function f is then defined by

f := �(σ − x)D� −

√
2

3
K. (8)

The flow rule governing the evolution of εi is given by

ε̇i = λi
(σ − x)D

�(σ − x)D�
, λi ≥ 0, f ≤ 0, λif = 0. (9)
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The nonlinear kinematic hardening of Armstrong-Frederick type is described by the rule

ε̇ii = λi κ x, (10)

where κ ≥ 0 is a material parameter. Taking (3)2 and (7)2 into account, this equation is
equivalent to

ẋ = c ε̇i − c λi κ x. (11)

This structure corresponds to a small-strain version of a rate-independent Maxwell fluid.
It is commonly employed to model the evolution of backstresses x in a hardening/dynamic
recovery format. Depending on the formulation, the initial conditions can be set in terms
of σ and x, or, alternatively, in terms of εi and εii.

This material model is thermodynamically consistent and objective. In the following,
its finite strain extensions are analyzed. The crucial part of any extension is how the
rate-independent Maxwell equation (11) is modified to the geometrically nonlinear case.

3 PRINCIPLES OF CONSTITUTIVE MECHANICS

Along with the general constitutive restrictions, like objectivity and thermodynamic
consistency, some more specific principles will be considered in the presented study.

3.1 W-invariance

In the case of metal plasticity, it is reasonable to consider the following property (cf.
[16]). Let F be the deformation gradient which maps the local reference configuration K̃
to the current configuration K. For a simple material with initial conditions, the current
Kirchhoff stress tensor S is a function of the local history of F and a set of initial conditions
Z0:

S(t) = S
t0≤t′≤t

(
F(t′),Z0

)
. (12)

Next, let F0 be a second-rank tensor, such that det(F0) = 1. Let K̃new := F0K̃ be a new
reference configuration. The corresponding new deformation gradient (also known as the
relative deformation gradient) is given by

Fnew(t) := F(t) F−1
0 . (13)

The model (12) is weakly invariant under the transformation (13) if there is

Znew
0 = Znew

0 (Z0,F0), (14)

such that the material model predicts the same Kirchhoff stresses:

S
t0≤t′≤t

(
F(t′),Z0

)
= S

t0≤t′≤t

(
Fnew(t′),Znew

0

)
. (15)

If the model (12) is invariant under arbitrary isochoric changes of the reference configu-
ration, we say that it is weakly invariant or, shortly, w-invariant (cf. [16]). Similar to
the classical (strong) invariance, the w-invariance represents a certain symmetry of the
constitutive equations. Just as any other symmetry, w-invariance provides insights into
the structure of the underlying constitutive equations.
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3.2 Pure volumetric-isochoric split

Again, consider the model (12). Let F(t) := det(F(t))−1/3 F(t) be the isochoric
(unimodular) part of the deformation gradient F(t). We say that (12) exhibits a pure
volumetric-isochoric split (v-i split) with elastic volume changes, if

i:
tr
(

S
t0≤t′≤t

(
F(t′),Z0

))
≡ 0, whenever tr S|t=t0 = 0;

ii: there is Zdev
0 = Zdev

0 (Z0) such that

(
S

t0≤t′≤t

(
F(t′),Z0

))D

≡ S
t0≤t′≤t

(
F(t′),Zdev

0

)
;

iii: tr
(
S(t)

)
is a function of the instant value det

(
F(t)

)
.

The most crucial part here is the condition i. Indeed, consider, for example, a model
where the initial conditions are formulated with respect to the Kirchhoff stresses: Z0 =
{S|t=t0}. If the property i is satisfied for a certain model, then the properties ii and iii
can be enforced by putting

S
t0≤t′≤t

(
F(t′),S|t=t0

)
:= S

t0≤t′≤t

(
F(t′), (S|t=t0)

D
)
+ p

(
det(F(t))

)
1, (16)

where p = 1
3
tr S is a suitable function of the current detF.

Note that a certain volumetric-isochoric split is satisfied by the small strain model
presented in the previous section. Therefore, it is natural to expect the v-i split in the
finite strain context as well.

4 GENERALIZATIONS TO FINITE STRAINS

4.1 Hyperelasto-plasticity with a nested multiplicative split

We discuss here a special case of a multiplicative viscoplasticity, which was proposed in
[17]. First, consider a multiplicative split of the deformation gradient F into the inelastic
(plastic) part Fi and the elastic part Fe. Next, basing on the seminal idea of Lion [8],
the inelastic part Fi is decomposed into the dissipative part Fii and the conservative
(energetic) part Fie:

F = FeFi, Fi = FieFii. (17)

Note that the kinematic relations (3) are restored from (17) in the small strain case.
The right Cauchy-Green tensor (RCGT) C, the inelastic RCGT Ci, and the inelastic

RCGT of substructure Cii are defined through

C := FTF, Ci := FT
i Fi, Cii := FT

iiFii. (18)

Analogously to (4), the free energy per unit mass is represented in the form

ψ = ψel(CCi
−1) + ψkin(CiCii

−1), (19)
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where ψel(·) and ψkin(·) are isotropic functions. To be definite, neo-Hookean assumptions
are used for the deviatoric part of the free energy

ρRψel = ρRψvol(det(CC−1
i )) +

µ

2

(
trCC−1

i − 3
)
, ρRψkin =

c

4

(
trCiC

−1
ii − 3

)
, (20)

where ρR > 0 is the mass density in the reference configuration, µ and c have the same
meaning as in the small strain case. We do not specify the volumetric part ψvol, since it is
irrelevant for the current study. The second Piola-Kirchhoff stress T̃ and the backstress
X̃, both operating on K̃, are computed through

T̃ = 2ρR

∂ψel(CCi
−1)

∂C

∣∣
Ci=const

, X̃ = 2ρR

∂ψkin(CiCii
−1)

∂Ci

∣∣
Cii=const

. (21)

Using (20) we arrive at

T̃ = p(det(C)) C−1 + µ C−1(CC−1
i )D, p ∈ R, X̃ =

c

2
C−1

i (CiC
−1
ii )D. (22)

The norm of the driving force F and the yield function f are defined through

F :=

√
tr
[(
CT̃−CiX̃

)D]2
, f := F−

√
2

3
K. (23)

The inelastic flow is described by the following system of constitutive equations

Ċi = 2
λi

F

(
CT̃−CiX̃

)D
Ci, Ċii = 2λiκ(CiX̃

)D
Cii, (24)

λi ≥ 0, f ≤ 0, λif = 0. (25)

Finally, the initial conditions are formulated in terms of Ci and Cii.
This material model is thermodynamically consistent (cf. [17]) and objective. As shown

in [20], the material model is w-invariant. Since the evolution of internal variables Ci and
Cii depends on C̄, this model exhibits the pure v-i split. Within the elastic range, the
stress response is hyperelastic. The model is free from any spurious oscillations of shear
stresses under monotonic simple shear. As shown in [22], the w-invariance allows one to
build an efficient numerical procedure (one-equation integrator) for this model. Various
extensions of this model are presented, among others, in [19, 21, 23, 18]. An alternative
derivation of the model was presented in [5]. The practical application of the w-invariance
of this model is discussed in [20, 14].

4.2 Logarithmic strain with the small strain structure

Another popular approach to the finite strain elasto-plasticity adopts the structure of
the geometrically linear theory (3) – (11) (cf. [12, 9, 15]). Let H be the Lagrangian
logarithmic strain (Hencky strain)

H(t) :=
1

2
ln(C(t)). (26)
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The infinitesimal strain tensor which appears in the geometrically linear theory, is replaced
now by the logarithmic strain: ε(t) := H(t). Let σ(t) be the stress tensor, computed by
the small strain theory as a response to ε(t). In the finite strain case, σ is understood as
a Lagrangian stress measure which is power conjugate to the logarithmic strain H:

σ : Ḣ = T̃ :
(1
2
Ċ
)

for all Ċ ∈ Sym. (27)

Using this identity, we obtain the following formula for the second Piola-Kirchhoff T̃

T̃ =
∂ ln(C)

∂C
: σ. (28)

The resulting finite strain model is objective. Since the small-strain model (3) – (11) is
thermodynamically consistent, so is its finite-strain counterpart. The model is free from
the shear stress oscillations (cf. Section 5). The stress response in the elastic domain
is hyperelastic. The model exhibits a pure v-i split. Efficient and robust numerical
procedures are available for this approach. Unfortunately, this model is not w-invariant
(this can be shown using a procedure, presented in [16]). Since the constitutive equations
depend on the choice of the reference configuration, one needs to specify exactly, which
configuration is used as a reference.

4.3 Hypoelasto-plasticity with an additive split

Another major modelling framework is based on a nested additive split of the strain
rate tensor, used in combination with hypoelastic relations (cf. [10, 11]). Let L := ḞF−1

be the velocity gradient. Its symmetric part, called the strain rate D := sym(L), is
decomposed into the inelastic (plastic) part Di and the elastic part De. The inelastic part
itself is decomposed into the dissipative part Dii and the conservative part De

D = De +Di, Di = Dii +Die. (29)

These relations can be seen as a generalization of (3). Let S and X be the Kirchhoff stress
and the backstress, respectively, both operating on the current configuration K. Denote
by

o

Y an objective time derivative of a second-rank tnesor Y. As a generalization of (7),
we consider the following hypoelastic relations

o

S = k tr(De)1+ 2µDD
e ,

o

X = cDie, (30)

where k, µ, and c were already introduced in (7). These equations corresponds to the
grade-zero hypoelasticity. Next, the yield function is postulated in the form (cf. (8))

f := �(S−X)D� −
√

2/3K, (31)

where K > 0 is the initial uniaxial yield stress. The inelastic flow is governed by (cf. (9)
and (10))

Di = λi
(S−X)D

�(S−X)D�
, Dii = λi κ X, (32)
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f ≤ 0, λi ≥ 0, fλi = 0. (33)

The initial conditions are imposed on the Kirchhoff stresses S and the backstress X.
Different models can be build by using different objective stress rates which appears in

(30). Some authors apply the so-called yield stationarity criterion, which was proposed by
Prager in [13]. For the models, where the yield function f is a general isotropic function

of S and X, the yield stationarity requires that f = const whenever
o

S =
o

X = 0. As
shown in [26], the yield stationarity implies that the objective rates

o

S and
o

X must be
corotational rates of the same type. In other words, the yield stationarity implies

o

S = Ṡ+ SΩ−ΩS,
o

X = Ẋ+XΩ−ΩX, Ω ∈ Skew. (34)

Here, Skew stands for the set of skew-symmetric tensors, the skew-symmetric operator Ω
is referred to as a spin tensor, superimposed dot stands for the material time derivative.
There are infinitely many ways of defining the spin tensor Ω [25, 7, 3]. Clearly, the
properties of the resulting material model depend on the specific choice of the spin Ω. In
particular, we have the following theorem (cf. [16]):

Theorem. Constitutive relations (29)—(34) are w-invariant if and only if the spin

tensor Ω does not depend on the choice of the reference configuration.

Let us consider some of the commonly used spins.
Zaremba-Jaumann rate. Fot the Zaremba-Jaumann rate (also known as the Zaremba-

Jaumann-Noll rate), we put

ΩZJ := W = skew(L),
o

YZJ := Ẏ +YΩZJ −ΩZJY. (35)

Note that the continuum spinW = skew(L) does not depend on the choice of the reference
configuration. Therefore, the corresponding system of equations is w-invariant. One major
drawback of this approach is that the stress response exhibits non-physical oscillations
under the simple shear: The shear stress oscillates like sin(γ), where γ is the shear strain.
These oscillations may lead to absurd results in case of kinematic hardening, although the
elastic strains may remain small (cf. Section 5). Another drawback is that the material
response fails to become hyperelastic in case of a frozen inelastic flow (when λi = 0).

Green-Naghdi rate. In order to define the Green-Naghdi rate (also known as the
Green-Naghdi-Dienes rate, Green-McInnis rate or polar rate) we consider the polar de-
composition of the deformation gradient: F = RU = VR. Then we put

ΩGN := ṘRT ∈ Skew,
o

YGN := Ẏ +YΩGN −ΩGNY. (36)

Unfortunately, the spin ΩGN depends on the choice of the reference configuration [6, 16].
Thus, the corresponding system of equations is not w-invariant. On the other hand, such
a model is free from spurious shear oscillations (see Section 5). Just as in the previous
case, the corresponding material model fails to provide a hyperelastic response even for a
frozen inelastic flow.

Logarithmic rate. Let V be the left stretch tensor (V :=
√
FFT). The logarithmic

stress rate is given by
o

Slog := Ṡ+ SΩlog −ΩlogS, (37)
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where the logarithmic spin Ωlog = Ωlog(V,L) is uniquely defined by the relation (cf.
[24, 27])

D =
o

(lnV)log. (38)

The following statement was proved in [2]: Dealing with grade-zero hypoelasticity with
corotational rates and constant elastic stiffness, the logarithmic stress rate is the only

choice which allows one to build integrable stress-strain relations in the elastic range. For
that reason, the logarithmic rate enjoys a privileged position among all the corotational
rates. As was shown in [16], the spin Ωlog depends on the choice of the reference config-
uration. Therefore, the corresponding material model is not w-invariant. In the purely
elastic case, the stress response reduces to a special type of hyperelasticity, where the
strain energy function is given by a quadratic function of the Hencky strain. This elastic
potential is known to produce absurd results for large elastic strains.

In a summary, it is impossible to build a material model of type (29)–(33), which would
combine the yield stationarity, w-invariance and exact integrability of the elastic part. On
the other hand, a positive feature of the corotational spin (34) is that the corresponding
models always exhibit the pure v-i split. Now, in an attempt to build a model, which
would be objective, w-invariant, and exactly integrable in the elastic domain, we proceed
to non-corotational rates.

Covariant Oldroyd rate. The covariant Oldroyd rate (also known as the lower
Oldroyd rate or the Cotter-Rivlin rate) of a Eulerian tensor Y is defined by

Ocovar(Y) := Ẏ + LT Y +Y L. (39)

A material model of type (29)–(33), based on this stress rate, is objective and w-invariant.
One remarkable property of this rate is that for the Almansi strain A we have

Ocovar(A) = D, where A :=
1

2
(1− F−TF−1). (40)

Thus, the stress response is exactly integrable whenever λi = 0. Unfortunately, the
corresponding model does not exhibit the pure v-i split: Even if the prescribed strain rate
D is trace-free and the initial stresses are deviatoric, the natural condition trS = trX = 0
is violated. Nevertheless, although Prager’s yield stationarity condition is violated by this
model, the model allows one to obtain plausible results (see Section 5).

The corresponding rate-independent Maxwell fluid is a scleronomous version of the
covaraint Maxwell model (cf. [4]).

Deviatorized covariant Oldroyd rate. In an attempt to enforce the pure v-i split
we consider a deviatorized covariant Oldroyd rate as follows

Odev
covar(Y) := Ocovar(Y)−

2

3
(Y : D)1 = Ẏ + LT Y +Y L−

2

3
(Y : D)1. (41)

The corresponding material model is objective and w-invaraint; the pure v-i split holds
true. According to the available analytical solutions (cf. [1]), the stress rate (41) produces
an oscillatory response to the monotonic simple shear even in the purely elastic case. The
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shear stress oscillates like sin(
√

2
3
γ), where γ is the shear strain. Thus, the oscillation

frequency is slightly lower than in the case of the Zaremba-Jaumann stress rate. In general,
this model should not be used if the elastic strains in the corresponding rate-independent
Maxwell body exceed a certain limit (see Section 5).

Contravariant Oldroyd rate. The contravariant Oldroyd rate (upper Oldroyd rate)
is defined as,

Ocontravar(Y) := Ẏ − LY −YLT. (42)

The corresponding material model is objective and w-invariant. The contravariant rate
of the Finger tensor a is related to the strain rate in the following way:

Ocontravar(a) = −D, where a :=
1

2
(1− FFT). (43)

Thus, this stress rate allows one to obtain exactly integrable response in the elastic range.
Unfortunately, just as for the covariant rate, the corresponding material model does not
exhibit the pure v-i split. Although the model violates Prager’s yield stationarity, it
allows one to obtain a reasonable stress response, even dealing with linear and nonlinear
kinematic hardening (see Section 5). The underlying Maxwell fluid is a scleronomous
version of the contravaraint Maxwell model (cf. [4]).

Deviatorized contravariant Oldroyd rate. In order to enforce the pure v-i split,
we consider now a deviatorized variant of the contravariant Oldroyd rate

Odev
contravar(Y) := Ocontravar(Y) +

2

3
(Y : D)1 = Ẏ − LY −YLT +

2

3
(Y : D)1. (44)

The resulting system of constitutive equations is objective and w-invaraint; the pure v-i
split is satisfied. An analytical solution is available for the simple shear (cf. [1]); the

solution says that the stresses oscillate like sin(
√

2
3
γ), where γ is the shear strain. Just

as its covariant counterpart, this model should not be implemented if the elastic strains
in the rate-independent Maxwell body exceed a certain limit (see Section 5).

5 NUMERICAL RESULTS

Let us simulate a stress response under the non-monotonic simple shear

F(t) = 1+ γ(t)ex ⊗ ey, γ(t) = min(5t, 10− 5t), t ∈ [0, 2]. (45)

The following material parameters are used (all quantities are non-dimensional): K = 1,
µ = 10, c = 0.5, κ = 0.5. Since the simple shear is isochoric, the bulk modulus k is ir-
relevant. Since the elastic strains accumulated in the rate-independent Maxwell fluid are
large, second-order effects like the stress oscillation and Poynting/Swift effect are clearly
visible (see Figure 1). Plausible results are predicted by the multiplicative model (Section
4.1) and the hypoelasto-plasticity with logarithmic rate (Section 4.3). Unrealistic shear
stresses are observed for oscillating models (Zaremba-Jaumann, deviatorized contravari-
ant and covariant Oldroyd); the small-strain-structure-model with the logarithmic strain
(Section 4.2) exhibits very strong isotropic softening, caused by the model kinematics.
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Figure 1: Simulations results for non-monotonic simple shear using different material models

6 CONCLUSIONS

Nine different models of finite strain plasticity with the nonlinear kinematic hardening
are analyzed in a qualitative way, using a number of criteria. The model based on the
multiplicative split (Section 4.1) is the only model which combines objectivity, thermo-
dynamic consistency, w-invariance, and the pure v-i split.
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