70,074 research outputs found

    Realms: A Structure for Consolidating Knowledge about Mathematical Theories

    Full text link
    Since there are different ways of axiomatizing and developing a mathematical theory, knowledge about a such a theory may reside in many places and in many forms within a library of formalized mathematics. We introduce the notion of a realm as a structure for consolidating knowledge about a mathematical theory. A realm contains several axiomatizations of a theory that are separately developed. Views interconnect these developments and establish that the axiomatizations are equivalent in the sense of being mutually interpretable. A realm also contains an external interface that is convenient for users of the library who want to apply the concepts and facts of the theory without delving into the details of how the concepts and facts were developed. We illustrate the utility of realms through a series of examples. We also give an outline of the mechanisms that are needed to create and maintain realms.Comment: As accepted for CICM 201

    Type decomposition in NIP theories

    Full text link
    We prove that any type in an NIP theory can be decomposed into a stable part (a generically stable partial type) and a distal-like quotient.Comment: Several improvements made following the referee repor

    On the relative strengths of fragments of collection

    Full text link
    Let M\mathbf{M} be the basic set theory that consists of the axioms of extensionality, emptyset, pair, union, powerset, infinity, transitive containment, Δ0\Delta_0-separation and set foundation. This paper studies the relative strength of set theories obtained by adding fragments of the set-theoretic collection scheme to M\mathbf{M}. We focus on two common parameterisations of collection: Πn\Pi_n-collection, which is the usual collection scheme restricted to Πn\Pi_n-formulae, and strong Πn\Pi_n-collection, which is equivalent to Πn\Pi_n-collection plus Σn+1\Sigma_{n+1}-separation. The main result of this paper shows that for all n≥1n \geq 1, (1) M+Πn+1-collection+Σn+2-induction on ω\mathbf{M}+\Pi_{n+1}\textrm{-collection}+\Sigma_{n+2}\textrm{-induction on } \omega proves the consistency of Zermelo Set Theory plus Πn\Pi_{n}-collection, (2) the theory M+Πn+1-collection\mathbf{M}+\Pi_{n+1}\textrm{-collection} is Πn+3\Pi_{n+3}-conservative over the theory M+strong Πn-collection\mathbf{M}+\textrm{strong }\Pi_n \textrm{-collection}. It is also shown that (2) holds for n=0n=0 when the Axiom of Choice is included in the base theory. The final section indicates how the proofs of (1) and (2) can be modified to obtain analogues of these results for theories obtained by adding fragments of collection to a base theory (Kripke-Platek Set Theory with Infinity and V=LV=L) that does not include the powerset axiom.Comment: 22 page
    • …
    corecore