5,307 research outputs found

    Influence of Context on Decision Making during Requirements Elicitation

    Get PDF
    Requirements engineers should strive to get a better insight into decision making processes. During elicitation of requirements, decision making influences how stakeholders communicate with engineers, thereby affecting the engineers' understanding of requirements for the future information system. Empirical studies issued from Artificial Intelligence offer an adequate groundwork to understand how decision making is influenced by some particular contextual factors. However, no research has gone into the validation of such empirical studies in the process of collecting needs of the future system's users. As an answer, the paper empirically studies factors, initially identified by AI literature, that influence decision making and communication during requirements elicitation. We argue that the context's structure of the decision should be considered as a cornerstone to adequately study how stakeholders decide to communicate or not a requirement. The paper proposes a context framework to categorize former factors into specific families, and support the engineers during the elicitation process.Comment: appears in Proceedings of the 4th International Workshop on Acquisition, Representation and Reasoning with Contextualized Knowledge (ARCOE), 2012, Montpellier, France, held at the European Conference on Artificial Intelligence (ECAI-12

    Super Logic Programs

    Full text link
    The Autoepistemic Logic of Knowledge and Belief (AELB) is a powerful nonmonotic formalism introduced by Teodor Przymusinski in 1994. In this paper, we specialize it to a class of theories called `super logic programs'. We argue that these programs form a natural generalization of standard logic programs. In particular, they allow disjunctions and default negation of arbibrary positive objective formulas. Our main results are two new and powerful characterizations of the static semant ics of these programs, one syntactic, and one model-theoretic. The syntactic fixed point characterization is much simpler than the fixed point construction of the static semantics for arbitrary AELB theories. The model-theoretic characterization via Kripke models allows one to construct finite representations of the inherently infinite static expansions. Both characterizations can be used as the basis of algorithms for query answering under the static semantics. We describe a query-answering interpreter for super programs which we developed based on the model-theoretic characterization and which is available on the web.Comment: 47 pages, revised version of the paper submitted 10/200

    On abduction and answer generation through constrained resolution

    Get PDF
    Recently, extensions of constrained logic programming and constrained resolution for theorem proving have been introduced, that consider constraints, which are interpreted under an open world assumption. We discuss relationships between applications of these approaches for query answering in knowledge base systems on the one hand and abduction-based hypothetical reasoning on the other hand. We show both that constrained resolution can be used as an operationalization of (some limited form of) abduction and that abduction is the logical status of an answer generation process through constrained resolution, ie., it is an abductive but not a deductive form of reasoning

    Default reasoning using maximum entropy and variable strength defaults

    Get PDF
    PhDThe thesis presents a computational model for reasoning with partial information which uses default rules or information about what normally happens. The idea is to provide a means of filling the gaps in an incomplete world view with the most plausible assumptions while allowing for the retraction of conclusions should they subsequently turn out to be incorrect. The model can be used both to reason from a given knowledge base of default rules, and to aid in the construction of such knowledge bases by allowing their designer to compare the consequences of his design with his own default assumptions. The conclusions supported by the proposed model are justified by the use of a probabilistic semantics for default rules in conjunction with the application of a rational means of inference from incomplete knowledge the principle of maximum entropy (ME). The thesis develops both the theory and algorithms for the ME approach and argues that it should be considered as a general theory of default reasoning. The argument supporting the thesis has two main threads. Firstly, the ME approach is tested on the benchmark examples required of nonmonotonic behaviour, and it is found to handle them appropriately. Moreover, these patterns of commonsense reasoning emerge as consequences of the chosen semantics rather than being design features. It is argued that this makes the ME approach more objective, and its conclusions more justifiable, than other default systems. Secondly, the ME approach is compared with two existing systems: the lexicographic approach (LEX) and system Z+. It is shown that the former can be equated with ME under suitable conditions making it strictly less expressive, while the latter is too crude to perform the subtle resolution of default conflict which the ME approach allows. Finally, a program called DRS is described which implements all systems discussed in the thesis and provides a tool for testing their behaviours.Engineering and Physical Science Research Council (EPSRC
    corecore