45 research outputs found

    Learning without Recall by Random Walks on Directed Graphs

    Get PDF
    We consider a network of agents that aim to learn some unknown state of the world using private observations and exchange of beliefs. At each time, agents observe private signals generated based on the true unknown state. Each agent might not be able to distinguish the true state based only on her private observations. This occurs when some other states are observationally equivalent to the true state from the agent's perspective. To overcome this shortcoming, agents must communicate with each other to benefit from local observations. We propose a model where each agent selects one of her neighbors randomly at each time. Then, she refines her opinion using her private signal and the prior of that particular neighbor. The proposed rule can be thought of as a Bayesian agent who cannot recall the priors based on which other agents make inferences. This learning without recall approach preserves some aspects of the Bayesian inference while being computationally tractable. By establishing a correspondence with a random walk on the network graph, we prove that under the described protocol, agents learn the truth exponentially fast in the almost sure sense. The asymptotic rate is expressed as the sum of the relative entropies between the signal structures of every agent weighted by the stationary distribution of the random walk.Comment: 6 pages, To Appear in Conference on Decision and Control 201

    On the mean square error of randomized averaging algorithms

    Get PDF
    This paper regards randomized discrete-time consensus systems that preserve the average "on average". As a main result, we provide an upper bound on the mean square deviation of the consensus value from the initial average. Then, we apply our result to systems where few or weakly correlated interactions take place: these assumptions cover several algorithms proposed in the literature. For such systems we show that, when the network size grows, the deviation tends to zero, and the speed of this decay is not slower than the inverse of the size. Our results are based on a new approach, which is unrelated to the convergence properties of the system.Comment: 11 pages. to appear as a journal publicatio

    Fast Averaging

    Get PDF
    We are interested in the following question: given n numbers x[subscript 1], ..., x[subscript n], what sorts of approximation of average x[subscript ave] = 1overn (x[subscript 1] + ... + x[subscript n]) can be achieved by knowing only r of these n numbers. Indeed the answer depends on the variation in these n numbers. As the main result, we show that if the vector of these n numbers satisfies certain regularity properties captured in the form of finiteness of their empirical moments (third or higher), then it is possible to compute approximation of x[subscript ave] that is within 1 ±ε multiplicative factor with probability at least 1 - δ by choosing, on an average, r = r(ε, δ, σ) of the n numbers at random with r is dependent only on ε, δ and the amount of variation σ in the vector and is independent of n. The task of computing average has a variety of applications such as distributed estimation and optimization, a model for reaching consensus and computing symmetric functions. We discuss implications of the result in the context of two applications: load-balancing in a computational facility running MapReduce, and fast distributed averaging.United States. Defense Advanced Research Projects Agency. Information Theory for Mobile Ad-Hoc Networks Progra

    Reach almost sure consensus with only group information

    No full text
    This brief presents a new distributed scheme to solve the consensus problem for a group of agents if neither their absolute states nor inter-agent relative states are available. The new scheme considers a random partition of agents into two subgroups at each step and then uses the relative group representative state as feedback information for the consensus purpose. It is then shown that almost sure consensus can be achieved under the proposed scheme in both discrete time and continuous time. For the discrete time case, almost sure consensus is achieved if and only if the weighting parameter for state update is greater than one. For the continuous time case, almost sure consensus is realized when the weighting parameter is positive. Moreover, it is shown that if a uniform probability is considered for group selection, then the group of agents can reach average consensus in mean.The work of Lin was supported by Zhejiang Provincial Natural Science Foundation of ChinaLR13F030002. The work of Yu was supported in part by the Australian Research Council through Discovery Project DP-130103610, a Queen Elizabeth II Fellowship under Grant DP-110100538, the National Natural Science Foundation of China (61375072), and the Open Research Project (No. ICT1427) of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China

    Distributed Estimation and Control of Algebraic Connectivity over Random Graphs

    Full text link
    In this paper we propose a distributed algorithm for the estimation and control of the connectivity of ad-hoc networks in the presence of a random topology. First, given a generic random graph, we introduce a novel stochastic power iteration method that allows each node to estimate and track the algebraic connectivity of the underlying expected graph. Using results from stochastic approximation theory, we prove that the proposed method converges almost surely (a.s.) to the desired value of connectivity even in the presence of imperfect communication scenarios. The estimation strategy is then used as a basic tool to adapt the power transmitted by each node of a wireless network, in order to maximize the network connectivity in the presence of realistic Medium Access Control (MAC) protocols or simply to drive the connectivity toward a desired target value. Numerical results corroborate our theoretical findings, thus illustrating the main features of the algorithm and its robustness to fluctuations of the network graph due to the presence of random link failures.Comment: To appear in IEEE Transactions on Signal Processin

    Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability

    Full text link
    Distributed consensus and other linear systems with system stochastic matrices WkW_k emerge in various settings, like opinion formation in social networks, rendezvous of robots, and distributed inference in sensor networks. The matrices WkW_k are often random, due to, e.g., random packet dropouts in wireless sensor networks. Key in analyzing the performance of such systems is studying convergence of matrix products WkWk−1...W1W_kW_{k-1}... W_1. In this paper, we find the exact exponential rate II for the convergence in probability of the product of such matrices when time kk grows large, under the assumption that the WkW_k's are symmetric and independent identically distributed in time. Further, for commonly used random models like with gossip and link failure, we show that the rate II is found by solving a min-cut problem and, hence, easily computable. Finally, we apply our results to optimally allocate the sensors' transmission power in consensus+innovations distributed detection
    corecore