13,805 research outputs found

    Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

    Full text link
    In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. First, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. Second, these methods aim to completely match the feature distributions between different domains, which is difficult because of each domain's characteristics. To solve these problems, we introduce a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to maximize the discrepancy between two classifiers' outputs to detect target samples that are far from the support of the source. A feature generator learns to generate target features near the support to minimize the discrepancy. Our method outperforms other methods on several datasets of image classification and semantic segmentation. The codes are available at \url{https://github.com/mil-tokyo/MCD_DA}Comment: Accepted to CVPR2018 Oral, Code is available at https://github.com/mil-tokyo/MCD_D

    Domain Conditioned Adaptation Network

    Full text link
    Tremendous research efforts have been made to thrive deep domain adaptation (DA) by seeking domain-invariant features. Most existing deep DA models only focus on aligning feature representations of task-specific layers across domains while integrating a totally shared convolutional architecture for source and target. However, we argue that such strongly-shared convolutional layers might be harmful for domain-specific feature learning when source and target data distribution differs to a large extent. In this paper, we relax a shared-convnets assumption made by previous DA methods and propose a Domain Conditioned Adaptation Network (DCAN), which aims to excite distinct convolutional channels with a domain conditioned channel attention mechanism. As a result, the critical low-level domain-dependent knowledge could be explored appropriately. As far as we know, this is the first work to explore the domain-wise convolutional channel activation for deep DA networks. Moreover, to effectively align high-level feature distributions across two domains, we further deploy domain conditioned feature correction blocks after task-specific layers, which will explicitly correct the domain discrepancy. Extensive experiments on three cross-domain benchmarks demonstrate the proposed approach outperforms existing methods by a large margin, especially on very tough cross-domain learning tasks.Comment: Accepted by AAAI 202

    Domain Generalization by Solving Jigsaw Puzzles

    Full text link
    Human adaptability relies crucially on the ability to learn and merge knowledge both from supervised and unsupervised learning: the parents point out few important concepts, but then the children fill in the gaps on their own. This is particularly effective, because supervised learning can never be exhaustive and thus learning autonomously allows to discover invariances and regularities that help to generalize. In this paper we propose to apply a similar approach to the task of object recognition across domains: our model learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals how to solve a jigsaw puzzle on the same images. This secondary task helps the network to learn the concepts of spatial correlation while acting as a regularizer for the classification task. Multiple experiments on the PACS, VLCS, Office-Home and digits datasets confirm our intuition and show that this simple method outperforms previous domain generalization and adaptation solutions. An ablation study further illustrates the inner workings of our approach.Comment: Accepted at CVPR 2019 (oral
    • …
    corecore