1,772 research outputs found

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    High-frequency neural oscillations and visual processing deficits in schizophrenia

    Get PDF
    Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder

    Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia

    Get PDF
    Current theories of the pathophysiology of schizophrenia have focused on abnormal temporal coordination of neural activity. Oscillations in the gamma-band range (>25 Hz) are of particular interest as they establish synchronization with great precision in local cortical networks. However, the contribution of high gamma (>60 Hz) oscillations toward the pathophysiology is less established. To address this issue, we recorded magnetoencephalographic (MEG) data from 16 medicated patients with chronic schizophrenia and 16 controls during the perception of Mooney faces. MEG data were analysed in the 25–150 Hz frequency range. Patients showed elevated reaction times and reduced detection rates during the perception of upright Mooney faces while responses to inverted stimuli were intact. Impaired processing of Mooney faces in schizophrenia patients was accompanied by a pronounced reduction in spectral power between 60–120 Hz (effect size: d = 1.26) which was correlated with disorganized symptoms (r = −0.72). Our findings demonstrate that deficits in high gamma-band oscillations as measured by MEG are a sensitive marker for aberrant cortical functioning in schizophrenia, suggesting an important aspect of the pathophysiology of the disorder

    An Integrative Tinnitus Model Based on Sensory Precision.

    Get PDF
    Tinnitus is a common disorder that often complicates hearing loss. Its mechanisms are incompletely understood. Current theories proposing pathophysiology from the ear to the cortex cannot individually - or collectively - explain the range of experimental evidence available. We propose a new framework, based on predictive coding, in which spontaneous activity in the subcortical auditory pathway constitutes a 'tinnitus precursor' which is normally ignored as imprecise evidence against the prevailing percept of 'silence'. Extant models feature as contributory mechanisms acting to increase either the intensity of the precursor or its precision. If precision (i.e., postsynaptic gain) rises sufficiently then tinnitus is perceived. Perpetuation arises through focused attention, which further increases the precision of the precursor, and resetting of the default prediction to expect tinnitus

    Cortical mechanisms for tinnitus in humans /

    Get PDF
    PhD ThesisThis work sought to characterise neurochemical and neurophysiological processes underlying tinnitus in humans. The first study involved invasive brain recordings from a neurosurgical patient, along with experimental manipulation of his tinnitus, to map the cortical system underlying his tinnitus. Widespread tinnitus-linked changes in low- and high-frequency oscillations were observed, along with inter-regional and cross-frequency patterns of communication. The second and third studies compared tinnitus patients to controls matched for age, sex and hearing loss, measuring auditory cortex spontaneous oscillations (with magnetoencephalography) and neurochemical concentrations (with magnetic resonance spectroscopy) respectively. Unlike in previous studies not controlled for hearing loss, there were no group differences in oscillatory activity attributable to tinnitus. However, there was a significant correlation between gamma oscillations (>30Hz) and hearing loss in the tinnitus group, and between delta oscillations (1-4Hz) and perceived tinnitus loudness. In the neurochemical study, tinnitus patients had significantly reduced GABA concentrations compared to matched controls, and within this group there was a positive correlation between choline concentration (potentially linked to acetylcholine and/or neuronal plasticity) and both hearing loss, and subjective tinnitus intensity and distress. In light of present and previous findings, tinnitus may be best explained by a predictive coding model of perception, which was tested in the final experiment. This directly controlled the three main quantities comprising predictive coding models, and found that delta/theta/alpha oscillations (1-12Hz) encoded the precision of predictions, beta oscillations (12-30Hz) encoded changes to predictions, and gamma oscillations represented surprise (unexpectedness of stimuli based on predictions). The work concludes with a predictive coding model of tinnitus that builds upon the present findings and settles unresolved paradoxes in the literature. In this, precursor processes (in varying combinations) synergise to increase the precision associated with spontaneous activity in the auditory pathway to the point where it overrides higher predictions of ‘silence’.Medical Research Council Wellcome Trust and the National Institutes of Healt

    Meta-Potentiation: Neuro-Astroglial Interactions Supporting Perceptual Consciousness

    Get PDF
    Conscious perceptual processing involves the sequential activation of cortical networks at several brain locations, and the onset of oscillatory synchrony affecting the same neuronal population. How do the earlier activated circuits sustain their excitation to synchronize with the later ones? We call such a sustaining process "meta-potentiation", and propose that it depends on neuro-astroglial interactions. In our proposed model, attentional cholinergic and stimulus-related glutamatergic inputs to astroglia elicit the release of astroglial glutamate to bind with neuronal NMDA receptors containing the NR2B subunit. Once calcium channels are open, slow inward currents activate the CaM/CaMKII complex to phosphorylate AMPA receptors in a population of neurons connected with the astrocyte, thus amplifying the local excitatory pattern to participate in a larger synchronized assembly that supports consciousness

    Consciousness CLEARS the Mind

    Full text link
    A full understanding of consciouness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), includes the prediction that "all conscious states are resonant states." This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These prediction include explanations of how slow perceptual learning can occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    corecore