5 research outputs found

    A Faster Counting Protocol for Anonymous Dynamic Networks

    Get PDF
    We study the problem of counting the number of nodes in a slotted-time communication network, under the challenging assumption that nodes do not have identifiers and the network topology changes frequently. That is, for each time slot links among nodes can change arbitrarily provided that the network is always connected. Tolerating dynamic topologies is crucial in face of mobility and unreliable communication whereas, even if identifiers are available, it might be convenient to ignore them in massive networks with changing topology. Counting is a fundamental task in distributed computing since knowing the size of the system often facilitates the design of solutions for more complex problems. Currently, the best upper bound proved on the running time to compute the exact network size is double-exponential. However, only linear complexity lower bounds are known, leaving open the question of whether efficient Counting protocols for Anonymous Dynamic Networks exist or not. In this paper we make a significant step towards answering this question by presenting a distributed Counting protocol for Anonymous Dynamic Networks which has exponential time complexity. Our algorithm ensures that eventually every node knows the exact size of the system and stops executing the algorithm. Previous Counting protocols have either double-exponential time complexity, or they are exponential but do not terminate, or terminate but do not provide running-time guarantees, or guarantee only an exponential upper bound on the network size. Other protocols are heuristic and do not guarantee the correct count

    Investigating the Cost of Anonymity on Dynamic Networks

    Full text link
    In this paper we study the difficulty of counting nodes in a synchronous dynamic network where nodes share the same identifier, they communicate by using a broadcast with unlimited bandwidth and, at each synchronous round, network topology may change. To count in such setting, it has been shown that the presence of a leader is necessary. We focus on a particularly interesting subset of dynamic networks, namely \textit{Persistent Distance} - G({\cal G}(PD)h)_{h}, in which each node has a fixed distance from the leader across rounds and such distance is at most hh. In these networks the dynamic diameter DD is at most 2h2h. We prove the number of rounds for counting in G({\cal G}(PD)2)_{2} is at least logarithmic with respect to the network size V|V|. Thanks to this result, we show that counting on any dynamic anonymous network with DD constant w.r.t. V|V| takes at least D+Ω(logV)D+ \Omega(\text{log}\, |V| ) rounds where Ω(logV)\Omega(\text{log}\, |V|) represents the additional cost to be payed for handling anonymity. At the best of our knowledge this is the fist non trivial, i.e. different from Ω(D)\Omega(D), lower bounds on counting in anonymous interval connected networks with broadcast and unlimited bandwith

    Population stability: regulating size in the presence of an adversary

    Full text link
    We introduce a new coordination problem in distributed computing that we call the population stability problem. A system of agents each with limited memory and communication, as well as the ability to replicate and self-destruct, is subjected to attacks by a worst-case adversary that can at a bounded rate (1) delete agents chosen arbitrarily and (2) insert additional agents with arbitrary initial state into the system. The goal is perpetually to maintain a population whose size is within a constant factor of the target size NN. The problem is inspired by the ability of complex biological systems composed of a multitude of memory-limited individual cells to maintain a stable population size in an adverse environment. Such biological mechanisms allow organisms to heal after trauma or to recover from excessive cell proliferation caused by inflammation, disease, or normal development. We present a population stability protocol in a communication model that is a synchronous variant of the population model of Angluin et al. In each round, pairs of agents selected at random meet and exchange messages, where at least a constant fraction of agents is matched in each round. Our protocol uses three-bit messages and ω(log2N)\omega(\log^2 N) states per agent. We emphasize that our protocol can handle an adversary that can both insert and delete agents, a setting in which existing approximate counting techniques do not seem to apply. The protocol relies on a novel coloring strategy in which the population size is encoded in the variance of the distribution of colors. Individual agents can locally obtain a weak estimate of the population size by sampling from the distribution, and make individual decisions that robustly maintain a stable global population size
    corecore