22,545 research outputs found

    Not Always Sparse: Flooding Time in Partially Connected Mobile Ad Hoc Networks

    Full text link
    In this paper we study mobile ad hoc wireless networks using the notion of evolving connectivity graphs. In such systems, the connectivity changes over time due to the intermittent contacts of mobile terminals. In particular, we are interested in studying the expected flooding time when full connectivity cannot be ensured at each point in time. Even in this case, due to finite contact times durations, connected components may appear in the connectivity graph. Hence, this represents the intermediate case between extreme cases of fully mobile ad hoc networks and fully static ad hoc networks. By using a generalization of edge-Markovian graphs, we extend the existing models based on sparse scenarios to this intermediate case and calculate the expected flooding time. We also propose bounds that have reduced computational complexity. Finally, numerical results validate our models

    Connectivity in Ad-Hoc Networks: an Infinite-Server Queue Approach

    Get PDF
    In this paper we present some extensions on previously published results regarding connectivity issues in one--dimensional ad--hoc networks. We show how an equivalentGI|D|\infty$ queueing model may be used to address the issue, and present connectivity results on both infinite and finite networks for various node placement statistics. We then show how a GI|G| model may be used to study broadcast percolation problems in ad--hoc networks with general node placement and random communication range. In particular, we obtain explicit results for the case of nodes distributed according to a Poisson distribution operating in a fading environment. In case of nodes distributed according to a Poisson point process, heavy traffic theory is applied to derive the critical communication range for connectivity and the critical transmission power for broadcast percolation in dense networks. The analysis is then extended to the case of unreliable ad--hoc networks, with an in--depth discussion of asymptotic results

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201
    • …
    corecore